Skip to main content
Log in

Structural Classes of Dimethylsulfate and Benzonitrile

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Nets of intermolecular contacts are analyzed using a sampling of 425 unique structural data from CSD, which correspond to the structural classes of dimethylsulfate (DMSO4 SC) and benzonitrile (PhCN SC). These SCs are the most frequent in molecular crystals among all structural classes that can be constructed using a single independent bearing contact between molecules. Intermolecular interaction energies of some crystal structures are calculated in the atom-atom approximation as well as by CE-B3LYP or CE-HF methods, and Hirshfeld surfaces of the molecules are analyzed. In most cases, these methods confirm the validity of distinguishing the bearing contact generating a diamond-like net (dia) in studied SCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

REFERENCES

  1. S. Lloyd. Measures of complexity: a nonexhaustive list. IEEE Control Syst., 2001, 21(4), 7/8. https://doi.org/10.1109/mcs.2001.939938

    Article  Google Scholar 

  2. S. V. Krivovichev. Which inorganic structures are the most complex? Angew. Chem., Int. Ed., 2014, 53(3), 654-661. https://doi.org/10.1002/anie.201304374

    Article  CAS  Google Scholar 

  3. W. Hornfeck. On an extension of Krivovichev′s complexity measures. Acta Crystallogr., Sect. A: Found. Adv., 2020, 76(4), 534-548. https://doi.org/10.1107/s2053273320006634

    Article  CAS  Google Scholar 

  4. C. Kaußler and G. Kieslich. crystIT: complexity and configurational entropy of crystal structures via information theory. J. Appl. Crystallogr., 2021, 54(1), 306-316. https://doi.org/10.1107/s1600576720016386

    Article  CAS  Google Scholar 

  5. A. M. Banaru, S. M. Aksenov, and S. V. Krivovichev. Complexity parameters for molecular solids. Symmetry, 2021, 13(8), 1399. https://doi.org/10.3390/sym13081399

    Article  CAS  Google Scholar 

  6. Y. V. Zefirov and P. M. Zorky. New applications of van der Waals radii in chemistry. Russ. Chem. Rev., 1995, 64(5), 415-428. https://doi.org/10.1070/rc1995v064n05abeh000157

    Article  Google Scholar 

  7. H. Vančik. From complexity to systems. Found. Chem., 2022. https://doi.org/10.1007/s10698-022-09455-6

    Article  Google Scholar 

  8. J. H. E. Cartwright and A. L. Mackay. Beyond crystals: the dialectic of materials and information. Philos. Trans. R. Soc., A, 2012, 370(1969), 2807-2822. https://doi.org/10.1098/rsta.2012.0106

    Article  PubMed  PubMed Central  Google Scholar 

  9. F. Aman, A. M. Asiri, W. A. Siddiqui, M. N. Arshad, A. Ashraf, N. S. Zakharov, and V. A. Blatov. Multilevel topological description of molecular packings in 1,2-benzothiazines. CrystEngComm, 2014, 16(10), 1963-1970. https://doi.org/10.1039/c3ce42218f

    Article  CAS  Google Scholar 

  10. O. Carugo, O. A. Blatova, E. O. Medrish, V. A. Blatov, and D. M. Proserpio. Packing topology in crystals of proteins and small molecules: a comparison. Sci. Rep., 2017, 7(1), 13209. https://doi.org/10.1038/s41598-017-12699-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A. V. Maleev, A. A. Gevorgyan, and K. A. Potekhin. New approach to the analysis of molecular packings in crystals with the use of atom-atom potentials. J. Struct. Chem., 2018, 59(2), 455-462. https://doi.org/10.1134/s0022476618020294

    Article  CAS  Google Scholar 

  12. A. M. Banaru. A fuzzy set of generating contacts in a molecular agglomerate. Moscow Univ. Chem. Bull., 2019, 74(3), 101-105. https://doi.org/10.3103/s0027131419030039

    Article  Google Scholar 

  13. A. M. Askhabov. Kvataronnye modeli zarozhdeniya i rosta kristallov (Quataron models for the nucleation and growth of crystals). Zap. Ross. Mineral. O-va, 2016, 145(5), 17. [In Russian]

  14. R. V. Galiulin. Delone systems as a basis of the discrete world geometry. Comput. Math. Math. Phys., 2003, 43(6), 754.

  15. N. Dolbilin. Delone sets with congruent clusters. Struct. Chem., 2016, 27(6), 1725-1732. https://doi.org/10.1007/s11224-016-0832-8

    Article  CAS  Google Scholar 

  16. I. A. Baburin, M. Bouniaev, N. Dolbilin, N. Y. Erokhovets, A. Garber, S. V. Krivovichev, and E. Schulte. On the origin of crystallinity: a lower bound for the regularity radius of Delone sets. Acta Crystallogr., Sect. A: Found. Adv., 2018, 74(6), 616-629. https://doi.org/10.1107/s2053273318012135

    Article  CAS  Google Scholar 

  17. V. A. Blatov. Voronoi–Dirichlet polyhedra in crystal chemistry: theory and applications. Crystallogr. Rev., 2004, 10(4), 249-318. https://doi.org/10.1080/08893110412331323170

    Article  CAS  Google Scholar 

  18. V. A. Blatov, A. P. Shevchenko, and D. M. Proserpio. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des., 2014, 14(7), 3576-3586. https://doi.org/10.1021/cg500498k

    Article  CAS  Google Scholar 

  19. A. P. Shevchenko, A. A. Shabalin, I. Y. Karpukhin, and V. A. Blatov. Topological representations of crystal structures: generation, analysis and implementation in the TopCryst system. Sci. Technol. Adv. Mater. Methods, 2022, 2(1), 250-265. https://doi.org/10.1080/27660400.2022.2088041

    Article  Google Scholar 

  20. A. M. Banaru and D. M. Gridin. A critical contact in molecular crystals. Moscow Univ. Chem. Bull., 2019, 74(6), 265-272. https://doi.org/10.3103/s0027131419060051

    Article  Google Scholar 

  21. A. V. Savchenkov and V. N. Serezhkin. A method for visualization of the variation of noncovalent interactions in crystal structures of conformational polymorphs. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2018, 74(2), 137-147. https://doi.org/10.1107/s2052520618001348

    Article  CAS  Google Scholar 

  22. V. N. Serezhkin and A. V. Savchenkov. Advancing the use of Voronoi–Dirichlet polyhedra to describe interactions in organic molecular crystal structures by the example of galunisertib polymorphs. CrystEngComm, 2021, 23(3), 562-568. https://doi.org/10.1039/d0ce01535k

    Article  CAS  Google Scholar 

  23. V. N. Serezhkin and A. V. Savchenkov. Features of the conformation of galunisertib molecules in the crystal structures of its solvates. CrystEngComm, 2021, 23(47), 8269-8275. https://doi.org/10.1039/d1ce01300a

    Article  CAS  Google Scholar 

  24. V. N. Serezhkin, L. Yu, and A. V. Savchenkov. ROY: Using the method of molecular Voronoi–Dirichlet polyhedra to examine the fine features of conformational polymorphism. Cryst. Growth Des., 2022, 22(11), 6717-6725. https://doi.org/10.1021/acs.cgd.2c00884

    Article  CAS  Google Scholar 

  25. V. V. Ivanov and V. M. Talanov. Principle of modular crystal structure. Crystallogr. Rep., 2010, 55(3), 362-376. https://doi.org/10.1134/s1063774510030028

    Article  CAS  Google Scholar 

  26. V. M. Talanov and V. V. Ivanov. Structure as the source of information on the chemical organization of substance. Russ. J. Gen. Chem., 2013, 83(12), 2225-2236. https://doi.org/10.1134/s1070363213120013

    Article  CAS  Google Scholar 

  27. M. Nespolo, B. Souvignier, and B. Stöger. Groupoid description of modular structures. Acta Crystallogr., Sect. A: Found. Adv., 2020, 76(3), 334-344. https://doi.org/10.1107/s2053273320000650

    Article  CAS  Google Scholar 

  28. A. L. Talis and A. L. Rabinovich. Symmetry of structures that can be approximated by chains of regular tetrahedra. Crystallogr. Rep., 2019, 64(3), 367-375. https://doi.org/10.1134/s106377451903026x

    Article  CAS  Google Scholar 

  29. A. L. Talis, A. A. Everstov, V. S. Kraposhin, and N. D. Simich-Lafitskii. Representation of the structural types of copper, diamond and tungsten in terms of a universal building unit. Met. Sci. Heat Treat., 2021, 62(11/12), 725-730. https://doi.org/10.1007/s11041-021-00629-1

    Article  CAS  Google Scholar 

  30. A. L. Talis, V. S. Kraposhin, and A. A. Everstov. Assembly of structural-type R2T17 from a universal building unit. Met. Sci. Heat Treat., 2022, 64(5/6), 338-342. https://doi.org/10.1007/s11041-022-00811-z

    Article  CAS  Google Scholar 

  31. B. P. van Eijck and J. Kroon. Structure predictions allowing more than one molecule in the asymmetric unit. Acta Crystallogr., Sect. B: Struct. Sci., 2000, 56(3), 535-542. https://doi.org/10.1107/s0108768100000276

    Article  Google Scholar 

  32. A. M. Banaru. Critical coordination number in homomolecular crystals. Moscow Univ. Chem. Bull., 2009, 64(2), 80-82. https://doi.org/10.3103/s0027131409020023

    Article  Google Scholar 

  33. E. A. Lord and A. M. Banaru. Number of generating elements in space group of a crystal. Moscow Univ. Chem. Bull., 2012, 67(2), 50-58. https://doi.org/10.3103/s0027131412020034

    Article  Google Scholar 

  34. V. K. Belsky and P. M. Zorkii. Distribution of organic homomolecular crystals by chiral types and structural classes. Acta Crystallogr., Sect. A, 1977, 33(6), 1004-1006. https://doi.org/10.1107/s0567739477002393

    Article  Google Scholar 

  35. A. M. Banaru, A. D. Bond, S. M. Aksenov, and D. A. Banaru. Molecular crystals with a sole bearing contact: structural classes and statistical data. Z. Kristallogr. - Cryst. Mater., 2022, 237(6/7), 271-279. https://doi.org/10.1515/zkri-2022-0017

    Article  CAS  Google Scholar 

  36. N. W. Ockwig, O. Delgado-Friedrichs, M. O′Keeffe, and O. M. Yaghi. Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res., 2005, 38(3), 176-182. https://doi.org/10.1021/ar020022l

    Article  CAS  PubMed  Google Scholar 

  37. V. A. Blatov. Methods for topological analysis of atomic nets. J. Struct. Chem., 2009, 50(S1), 160-167. https://doi.org/10.1007/s10947-009-0204-y

    Article  CAS  Google Scholar 

  38. A. Banaru and A. Kochnev. The minimal set of intermolecular interactions in the structures of substituted prolines. Stud. Univ. Babes-Bolyai, Chem., 2017, 62(1), 121-128. https://doi.org/10.24193/subbchem.2017.1.10

    Article  CAS  Google Scholar 

  39. V. N. Serezhkin, A. P. Shevchenko, L. B. Serezhkina, and M. A. Prokaeva. A new method for analyzing intermolecular interactions in unsaturated hydrocarbon crystals. Russ. J. Phys. Chem., 2005, 79(6), 929.

  40. A. M. Banaru, S. M. Aksenov, and D. A. Banaru. Critical molecular coordination numbers in the structural class P21/c, Z = 4(1). Moscow Univ. Chem. Bull., 2021, 76(5), 325-333. https://doi.org/10.3103/s0027131421050023

    Article  Google Scholar 

  41. J. J. McKinnon, A. S. Mitchell, and M. A. Spackman. Hirshfeld surfaces: A new tool for visualising and exploring molecular crystals. Chem. - Eur. J., 1998, 4(11), 2136-2141. https://doi.org/10.1002/(sici)1521-3765(19981102)4:11<2136::aid-chem2136>3.0.co;2-g

    Article  CAS  Google Scholar 

  42. J. J. McKinnon, M. A. Spackman, and A. S. Mitchell. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr., Sect. B: Struct. Sci., 2004, 60(6), 627-668. https://doi.org/10.1107/s0108768104020300

    Article  Google Scholar 

  43. M. A. Prokaeva, I. A. Baburin, and V. N. Serezhkin. On methods to determine the surface areas of molecules. J. Struct. Chem., 2009, 50(5), 867-872. https://doi.org/10.1007/s10947-009-0129-5

    Article  CAS  Google Scholar 

  44. A. Yu. Evnin. Elementarnoe vvedenie v matroidy (An elementary introduction to matroids). Mat. Obraz., 2005, 33, 2-33. [In Russian]

  45. A. M. Revyakin. Matroids. J. Math. Sci., 2002, 108, 71. https://doi.org/https://doi.org/10.1023/a:1012757316376

    Article  Google Scholar 

  46. L. A. Zadeh. Fuzzy sets. Inf. Control, 1965, 8(3), 338-353. https://doi.org/10.1016/s0019-9958(65)90241-x

    Article  Google Scholar 

  47. A. M. Banaru, D. A. Banaru, and S. M. Aksenov. On the subset of intermolecular contacts generating a molecular crystal: Topological features of organic minerals. Crystallogr. Rep., 2022, 67(7), 1133-1145. https://doi.org/10.1134/s1063774522070410

    Article  CAS  Google Scholar 

  48. P. M. Zorkii and O. N. Zorkaya. Ordinary organic crystal chemistry. Interpretation of the most probable homomolecular structures. J. Struct. Chem., 1998, 39(1), 103-124. https://doi.org/10.1007/bf02873832

    Article  CAS  Google Scholar 

  49. N. V. Chukanov, S. M. Aksenov, S. Jančev, I. V. Pekov, J. Göttlicher, Y. S. Polekhovsky, V. S. Rusakov, Y. V. Nelyubina, and K. V. Van. A new mineral species ferricoronadite, : mineralogical characterization, crystal chemistry and physical properties. Phys. Chem. Miner., 2016, 43(7), 503-514. https://doi.org/10.1007/s00269-016-0811-z

    Article  CAS  Google Scholar 

  50. C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward. The Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2016, 72(2), 171-179. https://doi.org/10.1107/s2052520616003954

    Article  CAS  Google Scholar 

  51. J. O. Bauer and C. Strohmann. Stereocontrol in nucleophilic substitution reactions at silicon: The role of permutation in generating silicon-centered chirality. J. Am. Chem. Soc., 2015, 137(13), 4304-4307. https://doi.org/10.1021/jacs.5b00861

    Article  CAS  PubMed  Google Scholar 

  52. M. O′Keeffe, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res., 2008, 41(12), 1782-1789. https://doi.org/10.1021/ar800124u

    Article  CAS  PubMed  Google Scholar 

  53. A. P. Shevchenko, A. A. Shabalin, I. Y. Karpukhin, and V. A. Blatov. Topological representations of crystal structures: generation, analysis and implementation in the TopCryst system. Sci. Technol. Adv. Mater. Methods, 2022, 2(1), 250-265. https://doi.org/10.1080/27660400.2022.2088041

    Article  Google Scholar 

  54. C. Jelsch, K. Ejsmont, and L. Huder. The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ, 2014, 1(2), 119-128. https://doi.org/10.1107/s2052252514003327

    Article  CAS  Google Scholar 

  55. G. Filippini and A. Gavezzotti. Empirical intermolecular potentials for organic crystals: the ′6-exp′ approximation revisited. Acta Crystallogr., Sect. B: Struct. Sci., 1993, 49(5), 868-880. https://doi.org/10.1107/s0108768193002150

    Article  Google Scholar 

  56. A. E. Saifutiarova, V. A. Karnoukhova, E. N. Gulakova, O. A. Fedorova, and I. V. Fedyanin. Molecular structures and crystal packings of styryldiazines. J. Struct. Chem., 2021, 62(4), 527-536. https://doi.org/10.1134/s002247662104003x

    Article  CAS  Google Scholar 

  57. A. Gavezzotti. Efficient computer modeling of organic materials. The atom–atom, Coulomb–London–Pauli (AA-CLP) model for intermolecular electrostatic-polarization, dispersion and repulsion energies. New J. Chem., 2011, 35(7), 1360. https://doi.org/10.1039/c0nj00982b

    Article  CAS  Google Scholar 

  58. S. Bacchi, M. Benaglia, F. Cozzi, F. Demartin, G. Filippini, and A. Gavezzotti. X-ray diffraction and theoretical studies for the quantitative assessment of intermolecular arene–perfluoroarene stacking interactions. Chem. - Eur. J., 2006, 12(13), 3538-3546. https://doi.org/10.1002/chem.200501248

    Article  CAS  PubMed  Google Scholar 

  59. C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ, 2017, 4(5), 575-587. https://doi.org/10.1107/s205225251700848x

    Article  CAS  Google Scholar 

  60. E. V. Peresypkina and V. A. Blatov. Topology of molecular packings in organic crystals. Acta Crystallogr., Sect. B: Struct. Sci., 2000, 56(6), 1035-1045. https://doi.org/10.1107/s0108768100011824

    Article  Google Scholar 

  61. D. M. Gridin and A. M. Banaru. Coordination numbers and topology of crystalline hydrocarbons. Moscow Univ. Chem. Bull., 2020, 75(6), 354-367. https://doi.org/10.3103/s0027131420060115

    Article  Google Scholar 

  62. A. M. Banaru and S. M. Aksenov. Complexity of molecular nets: Topological approach and descriptive statistics. Symmetry, 2022, 14(2), 220. https://doi.org/10.3390/sym14020220

    Article  CAS  Google Scholar 

  63. H. Li, B. Yan, H. Ma, Z. Sun, Y. Ma, and Z. Zhang. Crystal structure, thermodynamic properties and detonation characterization of bis(5-amino-1,2,4-triazol-3-yl)methane. Acta Crystallogr., Sect. C: Struct. Chem., 2020, 76(1), 64-68. https://doi.org/10.1107/s2053229619016231

    Article  CAS  Google Scholar 

  64. F. Frausto, Z. C. Smith, T. E. Haas, and S. W. Thomas III. Two-dimensional bricklayer arrangements of tolans using halogen bonding interactions. Chem. Commun., 2015, 51(42), 8825-8828. https://doi.org/10.1039/c5cc02225h

    Article  CAS  Google Scholar 

  65. S. Dey and D. Sain. Directed molecular recognition: furfurylamine appended ditopic receptor for succinic acid. Supramol. Chem., 2014, 26(10-12), 769-776. https://doi.org/10.1080/10610278.2013.872244

    Article  CAS  Google Scholar 

  66. H. Tian, N. Ye, and M. Luo. Sulfamide: A promising deep-ultraviolet nonlinear optical crystal assembled from polar covalent [SO2(NH2)2] tetrahedra. Angew. Chem., Int. Ed., 2022, 61(17). https://doi.org/10.1002/anie.202200395

    Article  Google Scholar 

  67. D. Dey, S. Bhandary, S. P. Thomas, M. A. Spackman, and D. Chopra. Energy frameworks and a topological analysis of the supramolecular features in in situ cryocrystallized liquids: tuning the weak interaction landscape via fluorination. Phys. Chem. Chem. Phys., 2016, 18(46), 31811-31820. https://doi.org/10.1039/c6cp05917a

    Article  CAS  PubMed  Google Scholar 

  68. C. Knobler and R. F. Ziolo. Organotellurium diiodides. The molecular structure of the α modification of I,I-diiodo-3,4-benzo-I-telluracyclopentane, αC8H8TeI2. J. Organomet. Chem., 1979, 178(2), 423-431. https://doi.org/10.1016/s0022-328x(00)94230-x

    Article  CAS  Google Scholar 

  69. J. D. McCullough, C. Knobler, and R. F. Ziolo. Crystal and molecular structure of the .beta. modification of 1,1-diiodo-3,4-benzo-1-telluracyclopentane, β-C8H8TeI2. Comparative study of secondary bonding systems and colors in organotellurium iodides. Inorg. Chem., 1985, 24(12), 1814-1818. https://doi.org/10.1021/ic00206a023

    Article  CAS  Google Scholar 

  70. P. C. Srivastava, S. Bajpai, R. Lath, S. Bajpai, R. Kumar, and R. J. Butcher. Molecular aggregates, zig-zag 2D-stairs, -ribbons and 3D-supramolecular networks of cyclic telluranes assisted by intermolecular Te⋯Cl and Te⋯Br secondary bonding. Polyhedron, 2004, 23(9), 1629-1639. https://doi.org/10.1016/j.poly.2004.03.019

    Article  CAS  Google Scholar 

  71. C. Jelsch, B. Guillot, and Y. B. M. Bisseyou. Deciphering the driving forces in crystal packings by analysis of hydrogen bonds, electrostatic energies and contact enrichment ratios. Acta Crystallogr., Sect. A: Found. Adv., 2021, 77(a2), C622. https://doi.org/10.1107/s0108767321090723

    Article  Google Scholar 

  72. A. Bondi. Van der Waals volumes and radii. J. Phys. Chem., 1964, 68(3), 441-451. https://doi.org/10.1021/j100785a001

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by Russian Science Foundation grants Nos. 22-13-00122 (A. M. Banaru, energy calculations) and 20-77-10065 (S. M. Aksenov, topological calculations).

The work with databases was carried out by D. A. Banaru within the State Assignment for the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Banaru.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 4, 109378.https://doi.org/10.26902/JSC_id109378

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banaru, A.M., Banaru, D.A. & Aksenov, S.M. Structural Classes of Dimethylsulfate and Benzonitrile. J Struct Chem 64, 631–649 (2023). https://doi.org/10.1134/S002247662304011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662304011X

Keywords

Navigation