Skip to main content
Log in

Synthesis, Crystal Structure and DFT Study of Ethyl 5-(Trimethylsilyl)-1-1H-Pyrazole-3-Carboxylate

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Ethyl 5-(trimethylsilyl)-1-1H-pyrazole-3-carboxylate is a broad-spectrum bioactive derivative of pyrazole. In this study, this compound was synthesized, and its purity was analyzed using IR, 1H NMR, 13C NMR, and MS. At the same time, the single crystal of the title compound was determined through X-ray diffraction analysis. Moreover, the optimal structure of the molecule was calculated using density functional theory (DFT) calculations and compared with the X-ray diffraction data. The results of conformational analysis revealed that the optimized molecular structure obtained from DFT calculations was equivalent to that obtained from X-ray diffraction analysis. The crystal structure determined using single crystal diffraction is consistent with that of the title compound. In addition, the molecular electrostatic potential and leading molecular orbitals of the title compound were further investigated using DFT calculations, and insights into some of the physical and chemical properties of the compound were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

REFERENCES

  1. P. K. Mykhailiuk. Fluorinated pyrazoles: from synthesis to applications. Chem. Rev., 2021, 121(3), 1670-1715. https://doi.org/10.1021/acs.chemrev.0c01015

    Article  CAS  PubMed  Google Scholar 

  2. N. Bakthavatchala Reddy, G. V. Zyryanov, G. Mallikarjuna Reddy, A. Balakrishna, A. Padmaja, V. Padmavathi, C. Suresh Reddy, J. R. Garcia, and G. Sravya. Design and synthesis of some new benzimidazole containing pyrazoles and pyrazolyl thiazoles as potential antimicrobial agents. J. Heterocycl. Chem., 2019, 56(2), 589-596. https://doi.org/10.1002/jhet.3435

    Article  CAS  Google Scholar 

  3. G. H. Sayed, M. E. Azab, K. E. Anwer, M. A. Raouf, and N. A. Negm. Pyrazole, pyrazolone and enaminonitrile pyrazole derivatives: Synthesis, characterization and potential in corrosion inhibition and antimicrobial applications. J. Mol. Liq., 2018, 252, 329-338. https://doi.org/10.1016/j.molliq.2017.12.156

    Article  CAS  Google Scholar 

  4. G. Kumar, V. Siva Krishna, D. Sriram, and S. M. Jachak. Pyrazole-coumarin and pyrazole-quinoline chalcones as potential antitubercular agents. Arch. Pharm. (Weinheim), 2020, 353(8), 2000077. https://doi.org/10.1002/ardp.202000077

    Article  CAS  Google Scholar 

  5. L. W. Mohamed, M. A. Shaaban, A. F. Zaher, S. M. Alhamaky, and A. M. Elsahar. Synthesis of new pyrazoles and pyrozolo [3,4-b] pyridines as anti-inflammatory agents by inhibition of COX-2 enzyme. Bioorg. Chem., 2019, 83, 47-54. https://doi.org/10.1016/j.bioorg.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  6. E. H. El-Sayed and K. S. Mohamed. Synthesis and anti-inflammatory evaluation of some new pyrazole, pyrimidine, pyrazolo[1,5-a]pyrimidine, imidazo[1,2-b]pyrazole and pyrazolo[5,1-b]quinazoline derivatives containning indane moiety. Polycyclic Aromat. Compd., 2021, 41(5), 1077-1093. https://doi.org/10.1080/10406638.2019.1653941

    Article  CAS  Google Scholar 

  7. R. Yan, X. Huang, X. Deng, and M. Song. Synthesis and activity evaluation of some pyrazole-pyrazoline derivatives as dual anti-inflammatory and antimicrobial agents. Polycyclic Aromat. Compd., 2022, 42(8), 5006-5019. https://doi.org/10.1080/10406638.2021.1919156

    Article  CAS  Google Scholar 

  8. G. Kumar, O. Tanwar, J. Kumar, M. Akhter, S. Sharma, C. R. Pillai, M. M. Alam, and M. S. Zama. Pyrazole-pyrazoline as promising novel antimalarial agents: A mechanistic study. Eur. J. Med. Chem., 2018, 149, 139-147. https://doi.org/10.1016/j.ejmech.2018.01.082

    Article  CAS  PubMed  Google Scholar 

  9. R. Alam, A. Alam, A. K. Panda, and Rahisuddin. Design, synthesis and cytotoxicity evaluation of pyrazolyl pyrazoline and pyrazolyl aminopyrimidine derivatives as potential anticancer agents. Med. Chem. Res., 2018, 27(2), 560-570. https://doi.org/10.1007/s00044-017-2082-8

    Article  CAS  Google Scholar 

  10. M. C. Sau, Y. Rajesh, M. Mandal, and M. Bhattacharjee. Copper catalyzed regioselective N - alkynylation of pyrazoles and evaluation of the anticancer activity of ethynyl-pyrazoles. ChemistrySelect, 2018, 3(12), 3511-3515. https://doi.org/10.1002/slct.201800177

    Article  CAS  Google Scholar 

  11. L. V. Zatonskaya, I. A. Schepetkin, T. V. Petrenko, V. D. Ogorodnikov, A. I. Khlebnikov, and A. S. Potapov. Synthesis and cytotoxicity of bis(pyrazol-1-yl)-alkane derivatives with polymethylene linkers and related mono- and dipyrazolium salts. Chem. Heterocycl. Compd., 2016, 52(6), 388-401. https://doi.org/10.1007/s10593-016-1900-0

    Article  CAS  Google Scholar 

  12. E. A. Orabi, M. A. A. Orabi, M. H. Mahross, and M. Abdel-Hakim. Computational investigation of the structure and antioxidant activity of some pyrazole and pyrazolone derivatives. J. Saudi Chem. Soc., 2018, 22(6), 705-714. https://doi.org/10.1016/j.jscs.2017.12.003

    Article  CAS  Google Scholar 

  13. G. Yu, L. Luo, S. Chen, F. He, Y. Xie, D. Luo, W. Xue, and J. Wu. Synthesis and insecticidal activity of novel diacylhydrazines derivatives containing a N-pyrazolepyrazole moiety. ChemistrySelect, 2018, 3(39), 10991-10995. https://doi.org/10.1002/slct.201802434

    Article  CAS  Google Scholar 

  14. N. P. Burlutskiy and A. S. Potapov. Approaches to the synthesis of dicarboxylic derivatives of bis(pyrazol-1-yl)alkanes. Molecules, 2021, 26(2), 413. https://doi.org/10.3390/molecules26020413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. E. A. Pershina, N. P. Burlutskiy, D. I. Pavlov, A. A. Ryadun, V. P. Fedin, and A. S. Potapov. Coordination polymers of cadmium with di(pyrazol-1-yl)alkane-4,4′-dicarboxylic acids: Synthesis, crystal structures, and luminescence properties. Russ. J. Coord. Chem., 2022, 48(10), 601-607. https://doi.org/10.1134/s1070328422100049

    Article  CAS  Google Scholar 

  16. J. S. Zhao, P. Jin, N. Xi, D.-D. Wei, J. Li, W. Deng, C.-H. Hu, and D. He. Design, synthesis and crystal structure of the antitumor agent N1-(2-(4-methoxy-2-nitrophenoxy)-2-dimethyl acyloxymethyl)-5-fluorouracil. Chin. J. Struct. Chem., 2017, 36(6), 937-942. https://doi.org/10.14102/j.cnki.0254-5861.2011-1437

  17. W. Y. Lin, F. Yang, A.-N. Duan, W.-W. You, and P.-L. Zhao. Synthesis, crystal structure and antitumor activity of (E)-N-(4-fluorobenzylidene)-3-(methylthio)-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazol-4-amine. Chin. J. Struct. Chem., 2018, 37(10), 1557-1562. https://doi.org/10.14102/j.cnki.0254-5861.2011-1967

  18. L. Deng, T. Liao, H. Sun, W. Hu, Z. Zhou, C. Zhao, and H. Pan. Synthesis, crystal structure and DFT study of a new compound (E)-3-(2-chlorobenzyl)-2-(propan-2-ylidenehydrazineylidene)-2,3-dihydroquinazolin-4(1H)-one. Mol. Cryst. Liq. Cryst., 2022, 737(1), 30-40. https://doi.org/10.1080/15421406.2021.2003952

    Article  CAS  Google Scholar 

  19. P. Geerlings, F. De Proft, and W. Langenaeker. Conceptual density functional theory. Chem. Rev., 2003, 103(5), 1793-1874. https://doi.org/10.1021/cr990029p

    Article  CAS  PubMed  Google Scholar 

  20. Ö. Dereli. Molecular structure and spectral (FT-IR, Raman) investigations of 3-aminocoumarin. Opt. Spectrosc., 2016, 120(5), 690-700. https://doi.org/10.1134/s0030400x16050222

    Article  CAS  Google Scholar 

  21. H.-H. Brintzinger, M.-H. Prosenc, F. Schaper, A. Weeber, and U. Wieser. Alternative force field models for ansa-zirconocene complexes–vibrational and structural studies on Me2Si-bridged and tert-butyl-substituted representatives. J. Mol. Struct., 1999, 485/486, 409-419. https://doi.org/10.1016/s0022-2860(99)00184-2

    Article  CAS  Google Scholar 

  22. N. Huang, C. Kalyanaraman, K. Bernacki, and M. P. Jacobson. Molecular mechanics methods for predicting protein-ligand binding. Phys. Chem. Chem. Phys., 2006, 8(44), 5166-5177. https://doi.org/10.1039/b608269f

    Article  CAS  PubMed  Google Scholar 

  23. Y. Liu, Y. Zhao, Q. Ren, Z. Zhou, H. Chai, and C. Zhao. Synthesis, crystal structure and DFT study of a novel planar bipyridyl compound 6,6′-bis(trifluoromethyl)-3,3′-bipyridine. J. Mol. Struct., 2020, 1208, 127869. https://doi.org/10.1016/j.molstruc.2020.127869

    Article  CAS  Google Scholar 

  24. Z. Zhou, Q. Wu, Z. Huang, D. Yu, and H. Lu. Synthesis, crystal structure, DFT, molecular docking and antitumor activity of 4-(2-chlorobenzyl)-1-(5-fluoro-2-hydroxy-3-((4-methylpiperidin-1-yl)methyl)phenyl)-[1,2,4]triazolo[4,3-a]quinazolin-5(4H)-one. Res. Chem. Intermed., 2021, 47(9), 3609-3627. https://doi.org/10.1007/s11164-021-04491-x

    Article  CAS  Google Scholar 

  25. M. P. Andersson and P. Uvdal. New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+G(d,p). J. Phys. Chem. A, 2005, 109(12), 2937-2941. https://doi.org/10.1021/jp045733a

    Article  CAS  PubMed  Google Scholar 

  26. M. A. Iramain, A. E. Ledesma, and S. A. Brandán. Structural properties and vibrational analysis of potassium 5-Br-2-isonicotinoyltrifluoroborate salt. Effect of Br on the isonicotinoyl ring. J. Mol. Struct., 2019, 1184, 146-156. https://doi.org/10.1016/j.molstruc.2019.02.010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. -S. Zhao.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 4, 108996.https://doi.org/10.26902/JSC_id108996

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, C.S. Synthesis, Crystal Structure and DFT Study of Ethyl 5-(Trimethylsilyl)-1-1H-Pyrazole-3-Carboxylate. J Struct Chem 64, 603–617 (2023). https://doi.org/10.1134/S002247662304008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662304008X

Keywords

Navigation