Skip to main content
Log in

Structural Stabilization of D- and T-Cages of the sI Hydrate by Gas Molecules

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Mechanisms of structural stabilization of sI hydrates by CH4, H2S, H2, N2, Ar, Kr, Xe, CO2, C2H6, C3H6 gas molecules are studied by the density functional method. It is shown that the hydrate D- and T-cages are deformed and their radii are changed (up to –0.23%) upon the introduction of guest gas molecules. Binding energies of the gases in the D- and T-cages are calculated. It is established that molecules with diameters d < 5 Å and d > 5 Å stabilize better D- and T-cages, respectively. Two groups of gases can be distinguished, depending on the binding energy dependence on the molecule′s mass: molecular gases (dEb/dM ∈ (–0.008; –0.006) eV·mol/g) and atomic gases (dEb/dM ∈ (–0.002; –0.0015) eV·mol/g). It is shown that the orientation of extended CO2, C2H6, and C3H6 molecules along the long axis of the T-cage is most energetically favorable. Densities of electronic states N(E) are calculated for the unfilled sI hydrate and for sI hydrates containing CH4 and CO2. It is shown that the presence of a guest molecule decreases the energy of the electronic subsystem and increases the hydrate′s stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. E. D. Sloan and C. A. Koh. Clathrate Hydrates of Natural Gases. CRC Press, 2007. https://doi.org/10.1201/9781420008494

    Book  Google Scholar 

  2. Y. F. Makogon. Natural gas hydrates - a promising source of energy. J. Nat. Gas Sci. Eng., 2010, 2, 45. https://doi.org/10.1016/j.jngse.2009.12.004

    Article  CAS  Google Scholar 

  3. C. A. Koh, R. E. Westacott, W. Zhang, K. Hirachand, J. L. Creek, and A. K. Soper. Mechanisms of gas hydrate formation and inhibition. Fluid Phase Equilib., 2002, 194, 143. https://doi.org/10.1016/S0378-3812(01)00660-4

    Article  CAS  Google Scholar 

  4. F. A. Kuznetsov, V. A. Istomin, and T. V. Rodionova. Gazovye gidraty: istoricheskii ekskurs, sovremennoe sostoyanie, perspectivy issledovanii (Historical Survey, Present-Day State, Perspectives of Studies). Ross. Khim. Zh., 2003, 47, 5. [In Russian]

  5. F. Su, C. L. Bray, B. O. Carter, G. Overend, C. Cropper, J. A. Iggo, and A. I. Cooper. Reversible hydrogen storage in hydrogel clathrate hydrates. Adv. Mater., 2009, 21, 2382. https://doi.org/10.1002/adma.200803402

    Article  CAS  Google Scholar 

  6. V. A. Istomin and V. S. Yakushev. Gazovye gidraty v prirodnykh usloviyakh (Gas Hydrates in Natural Conditions). Moscow, Russia: Nedra, 1992. [In Russian]

  7. S. Sh. Byk, Y. F. Makogon, and V. I. Fomina. Gazovie gidraty (Gas Hydrates). Moscow, Russia: Himiya, 1980. [In Russian]

  8. A. G. Groysman. Teplofizicheskie svoistva gazovykh gidratov (Thermophysical Properties of Gas Hydrates). Novosibirsk, Russia: Nauka, 1985. [In Russian]

  9. C. A. Koh, E. D. Sloan, A. K. Sum, and D. T. Wu. Fundamentals and applications of gas hydrates. Annu. Rev. Chem. Biomol. Eng., 2011, 2, 237. https://doi.org/10.1146/annurev-chembioeng-061010-114152

    Article  CAS  PubMed  Google Scholar 

  10. J. H. Van der Waals. The statistical mechanics of clathrate compounds. Trans. Faraday Soc., 1956, 52, 184. https://doi.org/10.1039/TF9565200184

    Article  CAS  Google Scholar 

  11. J. H. Van der Waals and J. C. Platteeuw. Validity of Clapeyron′s equation for phase equilibria involving clathrates. Nature, 1959, 183, 462. https://doi.org/10.1038/183462a0

    Article  CAS  Google Scholar 

  12. W. F. Waite, L. A. Stern, S. H. Kirby, W. J. Winters, and D. H. Mason. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate. Geophys. J. Int., 2007, 169, 767. https://doi.org/10.1111/j.1365-246X.2007.03382.x

    Article  Google Scholar 

  13. Y. P. Handa. A calorimetric study of naturally occurring gas hydrates. Ind. Eng. Chem. Res., 1988, 27, 872. https://doi.org/10.1021/ie00077a026

    Article  CAS  Google Scholar 

  14. W. Cai, X. Huang, and H. Lu. Instrumental Methods for Cage Occupancy Estimation of Gas Hydrate. Energies, 2022, 15, 485. https://doi.org/10.3390/en15020485

    Article  CAS  Google Scholar 

  15. R. K. Zhdanov, V. R. Belosludov, Y. Y. Bozhko, O. S. Subbotin, K. V. Gets, and R. V. Belosludov. Thermodynamic description of crystalline water phases containing hydrogen. JETP Lett., 2018, 108, 806. https://doi.org/10.1134/S0021364018240128

    Article  CAS  Google Scholar 

  16. R. M. Khusnutdinoff, R. R. Khayrullina, and M. B. Yunusov. Molekulyarno-dinamicheskie issledovaniya protsessa kristallizatsii i rosta gazovykh gidratov v silno pereokhlazhdennoi dvukhfaznoi sisteme “metan-voda” (Molecular Dynamics Studies of the Process of Crystallization and Growth of Gas Hydrates in a Strongly Supercooled Two-Phase System “Methane-Water”). Fiz. Tv. Tela, 2023, 2, 339. https://doi.org/10.21883/FTT.2023.02.54311.522 [In Russian]

    Article  PubMed  Google Scholar 

  17. L. C. Jacobson, W. Hujo, and V. Molinero. Thermodynamic stability and growth of guest-free clathrate hydrates: A low-density crystal phase of water. J. Phys. Chem., 2009, 113, 10298. https://doi.org/10.1021/jp903439a

    Article  CAS  PubMed  Google Scholar 

  18. Y. Bi and T. Li. Probing methane hydrate nucleation through the forward flux sampling method. J. Phys. Chem., 2014, 118, 13324. https://doi.org/10.1021/jp503000u

    Article  CAS  PubMed  Google Scholar 

  19. M. R. Walsh, G. T. Beckham, C. A. Koh, E. D. Sloan, D. T. Wu, and A. K. Sum. Methane hydrate nucleation rates from molecular dynamics simulations: Effects of aqueous methane concentration, interfacial curvature, and system size. J. Phys. Chem., 2011, 115, 21241. https://doi.org/10.1021/jp206483q

    Article  CAS  Google Scholar 

  20. M. R. Walsh, C. A. Koh, E. D. Sloan, A. K. Sum. and D. T. Wu. Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science, 2009, 326, 1095. https://doi.org/10.1126/science.1174010

    Article  CAS  PubMed  Google Scholar 

  21. V. R. Belosludov, K. V. Gets, R. K. Zhdanov, Y. Y. Bozhko, R. V. Belosludov, and L.-J. Chen. Collective Effect of Transformation of a Hydrogen Bond Network at the Initial State of Growth of Methane Hydrate. JETP Lett., 2022, 115(3), 124-129. https://doi.org/10.1134/s0021364022030031

    Article  CAS  Google Scholar 

  22. P. Guo, Y. L. Qiu, L. L. Li, Q. Luo, J. F. Zhao, and Y. K. Pan. Density functional theory study of structural stability for gas hydrate. Chin. Phys. B, 2018, 27, 043103. https://doi.org/10.1088/1674-1056/27/4/043103

    Article  CAS  Google Scholar 

  23. Z. Wang, L. Yang, R. Deng, and Z. Yang. First-principle study on the electronic and optical properties of cages occupancy of SI methane hydrates. arXiv.org, e-Print Arch., Condens. Matter, 2019, 1902.10914. https://doi.org/10.48550/arXiv.1902.10914

  24. X. X. Cao, Y. Su, J. J. Zhao, C. L. Liu, and P. W. Zhou. Stability and Raman spectroscopy of alkane guest molecules (CnHm, ≤ 6, ≤ 14) in 51262 and 51264 water cages by density functional theory calculations. Acta Phys. Sin., 2014, 63, 1437. https://doi.org/10.3866/PKU.WHXB201405292

    Article  Google Scholar 

  25. N. R. Sun, Z. W. Li, N. X. Qiu, X. H. Yu, X. R. Zhang, Y. J. Li, L. B. Yang, K. Luo, Q. Huang, and S. Y. Du. Ab initio studies on the clathrate hydrates of some nitrogen-and sulfur-containing gases. J. Phys. Chem., 2017, 121, 2620. https://doi.org/10.1021/acs.jpca.6b11850

    Article  CAS  PubMed  Google Scholar 

  26. M. B. Yunusov, R. M. Khusnutdinoff, and A. V. Mokshin. Electronic and thermophysical properties of gas hydrates: Ab initio simulation results. Phys. Solid State, 2021, 63, 372. https://doi.org/10.1134/S1063783421020268

    Article  CAS  Google Scholar 

  27. M. B. Yunusov and R. M. Khusnutdinoff. First-principle molecular dynamics study of methane hydrate. J. Phys. Conf. Ser., 2022, 2270, 012052. https://doi.org/10.1088/1742-6596/2270/1/012052

    Article  Google Scholar 

  28. L. Pauling and R. E. Marsh. The structure of chlorine hydrate. PNAS, 1952, 38, 112. https://doi.org/10.1073/pnas.38.2.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M. Stackelberg and H. R. Muller. Feste Gashydrate II: Struktur und Raumchemie. Z. Elektrochem. Angew., 1954, 58, 25. https://doi.org/10.1002/bbpc.19540580105

    Article  CAS  Google Scholar 

  30. R. K. McMullan and G. A. Jeffrey. Polyhedral clathrate hydrates. IX. Structure of ethylene oxide hydrate. J. Chem. Phys., 1965, 42, 2725. https://doi.org/10.1063/1.1703228

    Article  CAS  Google Scholar 

  31. T. C. Mak and R. K. McMullan. Polyhedral clathrate hydrates. X. Structure of the double hydrate of tetrahydrofuran and hydrogen sulfide. J. Chem. Phys., 1965, 42, 2732. https://doi.org/10.1063/1.1703229

    Article  Google Scholar 

  32. J. A. Ripmeester, J. S. Tse, C. I. Ratcliffe, and B. M. Powell. A new clathrate hydrate structure. Nature, 1987, 325, 135. https://doi.org/10.1038/325135a0

    Article  CAS  Google Scholar 

  33. R. M. Khusnutdinoff and A. V. Mokshin. Short-range structural transformations in water at high pressures. J. Non-Cryst. Solids, 2011, 357, 1677. https://doi.org/10.1016/j.jnoncrysol.2011.01.030

    Article  CAS  Google Scholar 

  34. R. M. Khusnutdinoff and A. V. Mokshin. Vibrational features of water at the low-density/high-density liquid structural transformations. Phys. A, 2012, 391, 2842. https://doi.org/10.1016/j.physa.2011.12.037

    Article  CAS  Google Scholar 

  35. R. M. Khusnutdinoff. Dynamics of a network of hydrogen bonds upon water electrocrystallization. Colloid J., 2013, 75, 792. https://doi.org/10.1134/S1061933X13060069

    Article  CAS  Google Scholar 

  36. F. Takeuchi, M. Hiratsuka, R. Ohmura, S. Alavi, A. K. Sum, and K. Yasuoka. Water proton configurations in structures I, II, and H clathrate hydrate unit cells. J. Chem. Phys., 2013, 138, 124504. https://doi.org/10.1063/1.4795499

    Article  CAS  PubMed  Google Scholar 

  37. J. D. Bernal and R. H. Fowler. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys., 1933, 1, 515. https://doi.org/10.1063/1.1749327

    Article  CAS  Google Scholar 

  38. P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 1964, 136, B864. https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  39. W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140, A1133. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  40. R. O. Jones and O. Gunnarsson. The density functional formalism, its applications and prospects. Rev. Mod. Phys., 1989, 61, 689. https://doi.org/10.1103/RevModPhys.61.689

    Article  CAS  Google Scholar 

  41. K. Burke and L. O. Wagner. DFT in a nutshell. Int. J. Quantum Chem., 2013, 113, 96. https://doi.org/10.1002/qua.24259

    Article  CAS  Google Scholar 

  42. J. P. Perdew. K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  43. K. Berland, V. R. Cooper, K. Lee, E. Schroder, T. Thonhauser, P. Hyldgaard, and B. I. Lundqvist. Van der Waals forces in density functional theory: a review of the vdW-DF method. Rep. Prog. Phys., 2015, 78, 066501. https://doi.org/10.1088/0034-4885/78/6/066501

    Article  CAS  PubMed  Google Scholar 

  44. D. Chakraborty, K. Berland, and T. Thonhauser. Next-generation nonlocal van der Waals density functional. J. Chem. Theory Comput., 2020, 16, 5893. https://doi.org/10.1021/acs.jctc.0c00471

    Article  CAS  PubMed  Google Scholar 

  45. G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1999, 54, 11169. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  46. P. Pulay. Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett., 1980, 73, 393. https://doi.org/10.1016/0009-2614(80)80396-4

    Article  CAS  Google Scholar 

  47. S. Y. Willow and S. S. Xantheas. Enhancement of hydrogen storage capacity in hydrate lattices. Chem. Phys. Let., 2012, 525, 13. https://doi.org/10.1016/j.cplett.2011.12.036

    Article  CAS  Google Scholar 

Download references

Funding

Large-scale quantum mechanical calculations were performed on the computing cluster of the Kazan (Volga Region) Federal University.

This work was funded by the Russian Science Foundation (project No. 22-22-00508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Yunusov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 4, 108770.https://doi.org/10.26902/JSC_id108770

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yunusov, M.B., Khusnutdinov, R.M. Structural Stabilization of D- and T-Cages of the sI Hydrate by Gas Molecules. J Struct Chem 64, 584–594 (2023). https://doi.org/10.1134/S0022476623040066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623040066

Keywords

Navigation