Skip to main content
Log in

N–H…O and Weak Interactions Stabilizing the Schiff Base/Picrate Multicomponent Salt

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Here, a new picrate salt containing a protonated Schiff base (SB) is presented. The new compound presents a high melting point (246-250 °C), compared to base free (99-101 °C), such as expected for a salt. Also, UV-Vis and infrared experiments were carried out to in order to confirm the presence of both components, a protonated SB and the picrate anion. The single-crystal X-ray diffraction reveals the formation of the new compound, containing an ion pair in the asymmetric unit. The intramolecular interactions and, mainly, the intermolecular interactions were explored in detail. The salt presents strong N–H…O hydrogen bonds and π–π stacking interactions stabilize the crystal self-assembly, differing from neutral SB which presents only weak interactions. Finally, we investigate the fluorescence properties and capability coordination with metals by Jobs method of the SB, however, no significant results were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

REFERENCES

  1. J.-M. Lehn. Towards complex matter: Supramolecular chemistry and self-organization. Eur. Rev., 2009, 17(2), 263-280. https://doi.org/10.1017/s1062798709000805

    Article  Google Scholar 

  2. G. R. Desiraju. Chemistry beyond the molecule. Nature, 2001, 412(6845), 397-400. https://doi.org/10.1038/35086640

    Article  CAS  PubMed  Google Scholar 

  3. A. Goel and R. Malhotra. Efficient detection of picric acid by pyranone based Schiff base as a chemosensor. J. Mol. Struct., 2022, 1249, 131619. https://doi.org/10.1016/j.molstruc.2021.131619

    Article  CAS  Google Scholar 

  4. N. K. Manjunatha, N. N. Alzubaidy, U. Likhitha, M. Manjunatha, K. Saravanan, B. V. Krishna Reddy, B. R. Kannika, G. Somashekarachar, M. T. Swamy, B. P. Siddaraju, P. Nagendra, Rajesha, and S. Madan Kumar. A potent anesthetic drug salt: experimental and computational studies. J. Mol. Struct., 2022, 1263, 133049. https://doi.org/10.1016/j.molstruc.2022.133049

    Article  CAS  Google Scholar 

  5. B. Dutt, M. Choudhary, and V. Budhwar. A brief discussion of multi-component organic solids: Key emphasis on co-crystallization. Turkish J. Pharm. Sci., 2022, 19(2), 220-231. https://doi.org/10.4274/tjps.galenos.2020.78700

    Article  CAS  Google Scholar 

  6. S. B. Khan and S.-L. Lee. Supramolecular chemistry: Host-guest molecular complexes. Molecules, 2021, 26(13), 3995. https://doi.org/10.3390/molecules26133995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. R. Sharma, P. J. Srijana, M. Singh, Kamal, B. Narayana, B. K. Sarojini, U. Likhitha, S. Murugavel, J. M. Raj, and R. Kant. Supramolecular co-crystal of 4-dimethyl aminopyridine with picric acid (4DMAP:PA): Synthesis, single crystal investigation, HF/DFT inspection, Hirshfeld surface and antifungal activity. J. Mol. Struct., 2022, 1270, 133921. https://doi.org/10.1016/j.molstruc.2022.133921

    Article  CAS  Google Scholar 

  8. K. Bauri, B. Saha, J. Mahanti, and P. De. A nonconjugated macromolecular luminogen for speedy, selective and sensitive detection of picric acid in water. Polym. Chem., 2017, 8(46), 7180-7187. https://doi.org/10.1039/c7py01579h

    Article  CAS  Google Scholar 

  9. V. Bertolasi, P. Gilli, and G. Gilli. Hydrogen bonding and electron donor-acceptor (EDA) interactions controlling the crystal packing of picric acid and its adducts with nitrogen bases. Their rationalization in terms of the pKa equalization and electron-pair saturation concepts. Cryst. Growth Des., 2011, 11(7), 2724-2735. https://doi.org/10.1021/cg101007a

    Article  CAS  Google Scholar 

  10. T. Li, Z.-H. Gan, C.-H. Liu, J.-R. Zhou, X.-P. Liu, L.-M. Yang, and C.-L. Ni. Crystal structure, vibrational spectra, optical properties and density functional theory approach of a picrate salt based on substituted triphenylphosphinium. J. Mol. Struct., 2019, 1180, 163-169. https://doi.org/10.1016/j.molstruc.2018.11.103

    Article  CAS  Google Scholar 

  11. A. Goel and R. Malhotra. Efficient detection of picric acid by pyranone based Schiff base as a chemosensor. J. Mol. Struct., 2022, 1249, 131619. https://doi.org/10.1016/j.molstruc.2021.131619

    Article  CAS  Google Scholar 

  12. Y. B. Barot, V. Anand, and R. Mishra. AIE-active phenothiazine based Schiff-base for the selective sensing of the explosive picric acid in real water samples and paper-based device. J. Photochem. Photobiol., A, 2023, 434, 114224. https://doi.org/10.1016/j.jphotochem.2022.114224

    Article  CAS  Google Scholar 

  13. F. M. Niquini, P. H. Machado, J. H. Valadares Rodrigues, A. V. Pontes-Silva, R. C. Figueiredo, R. G. Silveira, and R. S. Corrêa. On the experimental and theoretical calculations of rotameric conformations of a new Schiff base derived from amantadine. J. Mol. Struct., 2022, 1256, 132489. https://doi.org/10.1016/j.molstruc.2022.132489

    Article  CAS  Google Scholar 

  14. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  15. L. J. Farrugia. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr., 2012, 45(4), 849-854. https://doi.org/10.1107/s0021889812029111

    Article  CAS  Google Scholar 

  16. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, and P. A. Wood. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr., 2020, 53(1), 226-235. https://doi.org/10.1107/s1600576719014092

    Article  CAS  Google Scholar 

  17. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, and M. A. Spackman. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr., 2021, 54(3), 1006-1011. https://doi.org/10.1107/s1600576721002910

    Article  CAS  Google Scholar 

  18. A. L. S. Moura, P. H. Machado, and R. S. Corrêa. Picrate salts with bipyridine derivatives: Intramolecular and intermolecular aspects. Struct. Chem., 2023. https://doi.org/10.1007/s11224-023-02126-y

    Article  Google Scholar 

  19. F. M. Niquini, A. L. S. Moura, P. H. Machado, K. M. Oliveira, and R. S. Correa. Synthesis, infrared and molecular structure of adamantane-1-ammonium picrate monohydrate: a derivative of the antiviral symmetrel. Crystallogr. Rep., 2020, 65(6), 879-884. https://doi.org/10.1134/s1063774520060231

    Article  CAS  Google Scholar 

  20. A. B. de Carvalho, G. M. Diogo, R. S. Correa, and J. G. Taylor. Synthesis and molecular structure of a chiral bipyridine-menthol ether. J. Struct. Chem., 2020, 61(5), 763-768. https://doi.org/10.1134/s0022476620050121

    Article  CAS  Google Scholar 

  21. A. N. Chekhlov. Crystal structure of 1,10-diazonia-18-crown-6 picrate. J. Struct. Chem., 2001, 42(5), 854-859. https://doi.org/10.1023/A:1017994122393

    Article  CAS  Google Scholar 

  22. A. N. Usoltsev, S. A. Adonin, A. S. Novikov, M. N. Sokolov, and V. P. Fedin. Two-dimensional coordination polymer {[Bi(Рyz)I3]}: structure and analysis of the packing using the Hirshfeld surface method. Russ. J. Coord. Chem., 2020, 46(1), 23-27. https://doi.org/10.1134/s107032842001008x

    Article  CAS  Google Scholar 

  23. S. A. Katkova, I. I. Eliseev, A. S. Mikherdov, E. V. Sokolova, G. L. Starova, and M. A. Kinzhalov. Cyclometalated platinum(II) complexes with nitrile and isocyanide ligands: Synthesis, structure, and photophysical properties. Russ. J. Gen. Chem., 2021, 91(3), 393-400. https://doi.org/10.1134/s1070363221030099

    Article  CAS  Google Scholar 

  24. S. Sahli, F. Lefebvre, C. Jelsch, C. Ben Nasr, and K. Kaabi. Synthesis, crystal structure, Hirshfeld surface analysis and DFT calculations of two new Cu(II) and Cd(II) complexes with the 4-amino-6-methoxypyrimidine ligand. Russ. J. Coord. Chem., 2022, 48(8), 516-525. https://doi.org/10.1134/s1070328422080061

    Article  CAS  Google Scholar 

  25. Deepanjali Pandey, S. S. Narvi, R. Kumar, and J. Marek. Quantitative intermolecular interactions analysis and magnetic properties of thiocyanatoiron(II) complex with nicotinamide ligand. Russ. J. Inorg. Chem., 2022, 67(10), 1557-1566. https://doi.org/10.1134/s0036023622100357

    Article  CAS  Google Scholar 

  26. T. Zhou, H. Zhang, S.-H. Zhang, and Z. Hu. Room temperature synthesis, crystal structure, Hirshfeld surface analysis, and fluorescence properties of one novel cubane zinc cluster based on 1-{2-hydroxy-3-[(2-hydroxy-3-methoxy-benzylidene)-amino]-phenyl}-ethanone. Russ. J. Inorg. Chem., 2022, 67(S1), S35-S41. https://doi.org/10.1134/s0036023622601817

    Article  CAS  Google Scholar 

  27. S. A. Adonin, I. D. Gorokh, D. G. Samsonenko, A. S. Novikov, I. V. Korolkov, P. E. Plyusnin, M. N. Sokolov, and V. P. Fedin. Binuclear and polymeric bromobismuthate complexes: Crystal structures and thermal stability. Polyhedron, 2019, 159, 318-322. https://doi.org/10.1016/j.poly.2018.12.017

    Article  CAS  Google Scholar 

  28. H. Pérez, R. S. Corrêa, A. M. Plutín, B. O′Reilly, and M. B. Andrade. Probing the relationships between molecular conformation and intermolecular contacts in N,N-dibenzyl-N′-(furan-2-carbonyl)­thio­urea. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2012, 68(1), o19-o22. https://doi.org/10.1107/s0108270111052620

    Article  PubMed  Google Scholar 

Download references

Funding

Financial support provided by PROPP/UFOP, FAPEMIG (APQ-01674-18), and CNPq (308370/2017-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Corrêa.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 4, 108702.https://doi.org/10.26902/JSC_id108702

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niquini, F.M., Machado, P.H., Montilla-Suárez, J.M. et al. N–H…O and Weak Interactions Stabilizing the Schiff Base/Picrate Multicomponent Salt. J Struct Chem 64, 571–583 (2023). https://doi.org/10.1134/S0022476623040054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623040054

Keywords

Navigation