Skip to main content
Log in

Crystallization Features of LiI-CrIII Coordination Compounds with Cyclobutane-1,1-Dicarboxylic Acid Anions

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

For the goal of preparing LiI–CrIII heterometallic coordination compounds, we studied the reaction of Cr(NO3)3·9H2O and Li2(cbdc) (obtained by the neutralization of LiOH·H2O and cyclobutane-1,1-dicarboxylic acid (H2cbdc)) interacting in the 1:3 ratio in aqueous and methanol solutions. It was found that synthesis in the aqueous medium and subsequent crystallization of the reaction solution results in a low yield (9%) of crystalline 2D polymeric compound {[CaLi6Cr4(OH)4(cbdc)8(H2O)16]·7H2O}n (1) formed due to the hydrolysis of a chromium(III) carboxylate complex and the introduction of Ca2+ ions penetrating into the structure as impurities in the initial LiOH·H2O compound. The use of methanol as a solvent in a similar reaction and subsequent long-term aging leads to the formation of crystals of [Li5Cr(cbdc)4(H2O)5]n (2, yield: 55%) whose 3D polymeric structure contains independent fragments with five Li+ ions and does not contain Ca2+ ions. The crystal structures of 1 and 2 are determined by single-crystal XRD (CCDC No. 2161744 (1), No. 2161745 (2)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. A. Dey, J. Acharya, and V. Chandrasekhar. Heterometallic 3d–4f complexes as single-molecule magnets. Chem. - Eur. J., 2019, 14, 4433-4453. https://doi.org/10.1002/asia.201900897

    Article  CAS  PubMed  Google Scholar 

  2. V. Das, R. Kaushik, and F. Hussain. Heterometallic 3d–4f polyoxometalates: An emerging field with structural diversity to multiple applications. Coord. Chem. Rev., 2020, 413, 213271. https://doi.org/10.1016/j.ccr.2020.213271

    Article  CAS  Google Scholar 

  3. P. Buchwalter, J. Rosé, and P. Braunstein. Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev., 2015, 115, 28-126. https://doi.org/10.1021/cr500208k

    Article  CAS  PubMed  Google Scholar 

  4. W. Gao, H. Wei, C.-L. Wang, J.-P. Liu, and X.-M. Zhang. Multifunctional Zn–Ln (Ln = Eu and Tb) heterometallic metal-organic frameworks with highly efficient I2 capture, dye adsorption, luminescence sensing and white-light emission. Dalton Trans., 2021, 50, 11619-11630. https://doi.org/10.1039/D1DT01968F

    Article  CAS  PubMed  Google Scholar 

  5. Y.-L. Huang, D.-C. Zhong, L. Jiang, Y.-N. Gong, and T.-B. Lu. Two Li-Zn cluster-based metal-organic frameworks: Strong H2/CO2 binding and high selectivity to CO2. Inorg. Chem., 2017, 56, 705-708. https://doi.org/10.1021/acs.inorgchem.6b02407

    Article  CAS  PubMed  Google Scholar 

  6. S. B. Kim, J. Y. Kim, N. C. Jeong, and K. M. Ok. Anisotropic Li+ ion conductivity in a large single crystal of a Co(III) coordination complex. Inorg. Chem. Front., 2017, 4, 79-83. https://doi.org/10.1039/C6QI00314A

    Article  CAS  Google Scholar 

  7. E. S. Bazhina, N. V. Gogoleva, E. N. Zorina-Tikhonova, M. A. Kiskin, A. A. Sidorov, and I. L. Eremenko. Homo- and heteronuclear architectures of polynuclear complexes containing anions of substituted malonic acids: Synthetic approaches and analysis of molecular and crystal structures. J. Struct. Chem., 2019, 60, 855-881. https://doi.org/10.1134/S0022476619060015

    Article  CAS  Google Scholar 

  8. A. Beyer, M. S. von Gernler, S. Pflock, G. Türkoglu, L. Müller, A. Zahl, K. Gieb, P. Müller, T. Drewello, and N. Burzlaff. Alkali-metal-templated self-assembly of nickel(II) [12-MC-3] metallacoronates based on bis(pyrazol-1-yl)acetato ligands. Eur. J. Inorg. Chem., 2018, 2018, 765-777. https://doi.org/10.1002/ejic.201701400

    Article  CAS  Google Scholar 

  9. A. Kornowicz, M. Terlecki, I. Justyniak, D. Prochowicz, J. van Leusen, P. Kögerler, and J. Lewiński. Cyclodextrin-templated Co(II) grids: Symmetry control over supramolecular topology and magnetic properties. Inorg. Chem., 2022, 61, 2499-2508. https://doi.org/10.1021/acs.inorgchem.1c03344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. V. A. Rabinovich and Z. Ya. Khavin. Kratkii khimicheskii spravochnik (Brief chemical guide). Leningrad, Russia: Khimiya, 1978, 22. [In Russian]

  11. S. Khanra, M. Helliwell, F. Tuna, E. J. L. McInnes, and R. E. P. Winpenny. Synthesis, structural characterisation and magnetic studies of polymetallic iron phosphonate cages. Dalton Trans., 2009, 6166-6174. https://doi.org/10.1039/B903600H

    Article  PubMed  Google Scholar 

  12. D. S. Yambulatov, S. A. Nikolaevskii, M. A. Shmelev, K. A. Babeshkin, D. V. Korchagin, N. N. Efimov, A. S. Goloveshkin, P. A. Petrov, M. A. Kiskin, M. N. Sokolov, and I. L. Eremenko. Heterometallic CoII–LiI carboxylate complexes with N-heterocyclic carbene, triphenylphosphine and pyridine: a comparative study of magnetic properties. Mendeleev Commun., 2012, 31, 624-627. https://doi.org/10.1016/j.mencom.2021.09.011

    Article  CAS  Google Scholar 

  13. S. Haldar, N. Dutta, G. Vijaykumar, A. Das, L. Carrella, A. Oliver, and M. Bera. Synthesis, structure and properties of new heterometallic octanuclear Li2Na2Cu4 and decanuclear Li2Zn8 complexes. Polyhedron, 2019, 172, 58-66. https://doi.org/10.1016/j.poly.2019.03.013

    Article  CAS  Google Scholar 

  14. B. J. Cook, C.-H. Chen, M. Pink, and K. G. Caulton. Gross rearrangement of Fe(II) aggregate structure by replacement of two H+ by two Li+: Visualizing altered structure of acid versus conjugate base. Polyhedron, 2019, 174, 114152. https://doi.org/10.1016/j.poly.2019.114152

    Article  CAS  Google Scholar 

  15. E. S. Bazhina, G. G. Aleksandrov, M. A. Kiskin, N. N. Efimov, E. A. Ugolkova, A. A. Korlyukov, O. M. Nikitin, T. V. Magdesieva, V. V. Minin, A. A. Sidorov, J. S. Miller, and I. L. Eremenko. Synthesis, crystal structure and spin exchange coupling in polynuclear carboxylates with {Li2(VO)2} metal core. Polyhedron, 2017, 137, 246-255. https://doi.org/10.1016/j.poly.2017.08.005

    Article  CAS  Google Scholar 

  16. E. S. Bazhina, M. A. Kiskin, K. A. Babeshkin, N. N. Efimov, M. V. Fedin, and I. L. Eremenko. Effect of the solvent on the formation of new oxovanadium(IV) complexes with pentafluorobenzoate anions and 1,10-phenanthroline. Inorg. Chim. Acta, 2023, 544, 121238. https://doi.org/10.1016/j.ica.2022.121238

    Article  CAS  Google Scholar 

  17. J.-Y. Zou, W. Shi, J.-Y. Zhang, Y.-F. He, H.-L. Gao, J.-Z. Cui, and P. Cheng. Alkaline cation directed structural diversity of cubic-cage-based cobalt(II) metal-organic frameworks: from pcu to bct net. CrystEngComm, 2014, 16, 7133-7140. https://doi.org/10.1039/C4CE00597J

    Article  CAS  Google Scholar 

  18. Z.-Q. Du, Y.-P. Li, X.-X. Wang, J. Wang, and Q.-G. Zhai, Enhanced electrochemical performance of Li–Co–BTC ternary metal-organic frameworks as cathode materials for lithium-ion batteries. Dalton Trans., 2019, 48, 2013-2018. https://doi.org/10.1039/C8DT04863K

    Article  CAS  PubMed  Google Scholar 

  19. M. Lia, W. Yang, P. Qiu, G. Rena, C. Li, Z. Chen, Y. Wang, and Q. Pan. Two efficient pH sensors based on heteronuclear metal-organic frameworks. J. Lumin., 2019, 205, 380-384. https://doi.org/10.1016/j.jlumin.2018.09.056

    Article  CAS  Google Scholar 

  20. L. Feng, G. Ren, F. Wang, W. Yang, G. Zhu, and Q. Pan. Two bimetallic metal-organic frameworks capable of direct photocatalytic degradation of dyes under visible light. Transition Met. Chem., 2019, 44, 275-281. https://doi.org/10.1007/s11243-018-0292-7

    Article  CAS  Google Scholar 

  21. A. A. Sapianik, M. A. Kiskin, K. A. Kovalenko, D. G. Samsonenko, D. N. Dybtsev, N. Audebrand, Y. Sun, and V. P. Fedin. Rational synthesis and dimensionality tuning of MOFs from preorganized heterometallic molecular complexes. Dalton Trans., 2019, 48, 3676-3686. https://doi.org/10.1039/C8DT05136D

    Article  CAS  PubMed  Google Scholar 

  22. K. Albahily, S. Licciulli, S. Gambarotta, I. Korobkov, R. Chevalier, K. Schuhen, and R. Duchateau. Highly active ethylene oligomerization catalysts. Organometallics, 2011, 30, 3346-3352. https://doi.org/10.1021/om2002359

    Article  CAS  Google Scholar 

  23. S. V. Kulangara, C. Mason, M. Juba, Y. Yang, I. Thapa, S. Gambarotta, I. Korobkov, and R. Duchateau. Synthesis and catalytic oligomerization activity of chromium catalysts of ligand systems with switchable connectivity. Organometallics, 2012, 31, 6438-6449. https://doi.org/10.1021/om300673u

    Article  CAS  Google Scholar 

  24. Z. Hao, B. Xu, W. Gao, Y. Han, G. Zeng, J. Zhang, G. Li, and Y. Mu. Chromium complexes with N,N,N-tridentate quinolinyl anilido-imine ligand: Synthesis, characterization, and catalysis in ethylene polymerization. Organometallics, 2015, 34, 12, 2783-2790. https://doi.org/10.1021/acs.organomet.5b00247

    Article  CAS  Google Scholar 

  25. D.-H. Kwon, J. T. Fuller, U. J. Kilgore, O. L. Sydora, S. M. Bischof, and D. H. Ess. Computational transition-state design provides experimentally verified Cr(P,N) catalysts for control of ethylene trimerization and tetramerization. ACS Catal., 2018, 8, 1138-1142. https://doi.org/10.1021/acscatal.7b04026

    Article  CAS  Google Scholar 

  26. H. Chen, L. N. Dawe, and C. M. Kozak. Chromium(III) amine-bis(phenolate) complexes as catalysts for copolymerization of cyclohexene oxide and CO2. Catal. Sci. Technol., 2014, 4, 1547-1555. https://doi.org/10.1039/c3cy01002c

    Article  CAS  Google Scholar 

  27. G. T. Kent, A. W. Cook, P. L. Damon, R. A. Lewis, G. Wu, and T. W. Hayton. Synthesis and characterization of two “tied-back” lithium ketimides and isolation of a ketimide-bridged [Cr2]6+ dimer with strong antiferromagnetic coupling. Inorg. Chem., 2021, 60, 4996-5004. https://doi.org/10.1021/acs.inorgchem.1c00052

    Article  CAS  PubMed  Google Scholar 

  28. O. Ojelere, D. Graf, and S. Mathur. Molecularly engineered lithium-chromium alkoxide for selective synthesis of LiCrO2 and Li2CrO4 nanomaterials. Inorganics, 2019, 7, 22. https://doi.org/10.3390/inorganics7020022

    Article  CAS  Google Scholar 

  29. S. Decurtins, H. W. Schmalle, P. Schneuwly, J. Ensling, and P. Gutlich. A concept for the synthesis of 3-dimensional homo- and bimetallic oxalate-bridged networks [M2(ox)3]n. Structural, Möessbauer, and magnetic studies in the field of molecular-based magnets. J. Am. Chem. Soc., 1994, 116, 9521-9528. https://doi.org/10.1021/ja00100a016

    Article  CAS  Google Scholar 

  30. R. Andrés, M. Gruselle, B. Malézieux, M. Verdaguer, and J. Vaissermann. Enantioselective synthesis of optically active polymeric homo- and bimetallic oxalate-bridged networks [M2(ox)3]n. Inorg. Chem., 1999, 38, 4637-4646. https://doi.org/10.1021/ic9904135

    Article  CAS  PubMed  Google Scholar 

  31. R. Sieber, S. Decurtins, H. Stoeckli-Evans, C. Wilson, D. Yufit, J. A. K. Howard, S. C. Capelli, and A. Hauser. A thermal spin transition in [Co(bpy)3][LiCr(ox)3] (ox = ; bpy = 2,2′-bipyridine). Chem. - Eur. J., 2000, 6(2), 361-368. https://doi.org/10.1002/(sici)1521-3765(20000117)6:2<361::aid-chem361>3.0.co;2-y

    Article  CAS  PubMed  Google Scholar 

  32. F. R. Fortea-Péreza, J. Pasán, A. Pascual-Alvarez, C. Ruiz-Pérez, M. Julve, and F. Lloret. One-dimensional oxalato-bridged heterobimetallic coordination polymers by using [the [Cr(pyim)(C2O4)2] complex as metalloligand [pyim = 2-(2′-pyridyl)imidazole]. Inorg. Chim. Acta, 2019, 486, 150-157. https://doi.org/10.1016/j.ica.2018.09.080

    Article  CAS  Google Scholar 

  33. L. Martin, H. Engelkamp, H. Akutsu, S. Nakatsuji, J. Yamada, P. Hortond, and M. B. Hursthoused. Radical-cation salts of BEDT–TTF with lithium tris(oxalato)metallate(III). Dalton Trans., 2015, 44, 6219-6223. https://doi.org/10.1039/c5dt00183h

    Article  CAS  PubMed  Google Scholar 

  34. H. Kherfi, M. A. A. Benhacine, M. Hamadene, and F. Balegroune. ACr(C2O4)2(H2O)4 (A = Li or Na): Two new coordination polymers of low dimensionality with different hydrogen-bond networks. Acta Crystallogr., Sect.C: Cryst. Struct. Chem., 2019, 75, 1524-1534. https://doi.org/10.1107/S2053229619014074

    Article  CAS  Google Scholar 

  35. R. J. Bianchini, U. Geiser, H. Place, S. Kaizaki, Y. Morita, and J. I. Legg. Synthesis and characterization of the three geometrical isomers of difluoro(1,3-propanediamine-N,N′-diacetato)chromate(III). Crystal structure of trans-Li[CrF2(1,3-pdda)]·2H2O. Inorg. Chem., 1986, 25, 2129-2134. https://doi.org/10.1021/ic00233a006

    Article  CAS  Google Scholar 

  36. M. Parvez, C. Maricondi, D. J. Radanović, M. I. Djuran, and B. E. Douglas. Crystal structures and absolute configurations of (+)589-Li[Co(edtp)]·3H2O and (+)589-Li[Cr(edtp)]·3H2O complexes of ethylenediamine-N,N,N′,N′-tetra-3-propionate ion and correlations with circular dichroism spectra. Inorg. Chim. Acta, 1991, 182, 177-186. https://doi.org/10.1016/S0020-1693(00)90153-1

    Article  CAS  Google Scholar 

  37. F. T. Helm, W. H. Watson, D. J. Radanović, and B. E. Douglas. Structure and absolute configuration of the (–)D isomer of lithium ethylenediamine-N,N′-diacetato-N,N′-di-3-propionatochromate(III) pentahydrate, (–)D-Li[Cr(EDDDA)]·5H2O. Inorg. Chem., 1977, 16, 2351-2354. https://doi.org/10.1021/ic50175a040

    Article  CAS  Google Scholar 

  38. E. S. Bazhina, M. A. Shmelev, M. A. Kiskin, and I. L. Eremenko. Structure forming role of alkaline metal cations in the formation of chromium(III) complexes with anions of cyclopropane-1,1-dicarboxylic acid. Russ. J. Coord. Chem., 2021, 47, 186-195. https://doi.org/10.1134/S1070328421030015

    Article  CAS  Google Scholar 

  39. SMART (control) and SAINT (integration) Software. Version 5.0. Madison, WI, USA: Bruker AXS, 1997.

  40. G. M. Sheldrik. SADABS. Program for scanning and correction of area detector data. Göttingen, Germany: University of Göttingen, 2004.

  41. G. M. Sheldrik. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect.C: Struct. Chem., 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  42. O. V. Dolomanov, L. J. Bourhis. R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42, 339-341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  43. M. Llunell, D. Casanova, J. Cirera, P. Alemany, and S. Alvarez. SHAPE, v.2.1. Program for the stereochemical analysis of molecular fragments by means of continuous shape measures and associated tools. Spain: Barselona, 2013.

  44. A. Crochet, J.-P. Brog, and K. M. Fromm. Mixed metal multinuclear Cr(III) cage compounds and coordination polymers based on unsubstituted phenolate: Design, synthesis, mechanism, and properties. Cryst. Growth Des., 2016, 16, 189-199. https://doi.org/10.1021/acs.cgd.5b01084

    Article  CAS  Google Scholar 

  45. P.-P. Yang. Synthesis, structure, and magnetic studies of a new wheel-shaped cluster. Z. Anorg. Allg. Chem., 2011, 637, 567-571. https://doi.org/10.1002/zaac.201000431

    Article  CAS  Google Scholar 

  46. M. I. Khan, S. Tabussum, R. J. Doedens, V. O. Golub, and C. J. O′Connor. Functionalized metal oxide clusters: Synthesis, characterization, crystal structures, and magnetic properties of a novel series of fully reduced heteropolyoxovanadium cationic clusters decorated with organic ligands [MO6{(OCH2CH2)2N(CH2CH2OH)}6]X (M = Li, X = Cl·LiCl; M = Na, X = Cl·H2O; M = Mg, X = 2Br·H2O; M = Mn, Fe, X = 2Cl; M = Co, Ni, X = 2Cl·H2O). Inorg. Chem. 2004, 43, 5850-5859. https://doi.org/10.1021/ic049417m

    Article  CAS  PubMed  Google Scholar 

  47. V. Hlinová, A. Jaroš, T. David, I. Císařová, J. Kotek, V. Kubíček, and P. Hermann. Complexes of phosphonate and phosphinate derivatives of dipicolylamine. New J. Chem., 2018, 42, 7713-7722. https://doi.org/10.1039/C8NJ00100F

    Article  CAS  Google Scholar 

  48. H. Han, Z. Wei, M. C. Barry, J. C. Carozza, M. Alkan, A. Yu. Rogachev, A. S. Filatov, A. M. Abakumov, and E. V. Dikarev. A three body problem: A genuine heterotrimetallic molecule vs. a mixture of two parent heterobimetallic molecule. Chem. Sci., 2018, 9, 4736-4745. https://doi.org/10.1039/C8SC00917A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. M. R. Gau and M. J. Zdilla. Multinuclear clusters of manganese and lithium with silsesquioxane-derived ligands: Synthesis and ligand rearrangement by dioxygen- and base-mediated Si–O bond cleavage. Inorg. Chem., 2021, 60, 2866-2871. https://doi.org/10.1021/acs.inorgchem.0c03225

    Article  CAS  PubMed  Google Scholar 

  50. H. Han, Z. Wei, M. C. Barry, A. S. Filatov, and E. V. Dikarev. Heterometallic molecular precursors for a lithium–iron oxide material: Synthesis, solid state structure, solution and gas-phase behaviour, and thermal decomposition. Dalton Trans., 2017, 46, 5644-5649. https://doi.org/10.1039/C6DT04602A

    Article  CAS  PubMed  Google Scholar 

  51. I. G. de Muro, M. Insausti, L. Lezama, M. K. Urtiaga, M. I. Arriortua, and T. Rojo. Study of the [CaM(C3H2O4)2(H2O)4nH2O [M = Mn, Fe or Co (n = 0) and Ni (n = 2)] systems: Synthesis, structure, spectroscopic and magnetic properties. J. Chem. Soc., Dalton Trans., 2000, 3360-3364. https://doi.org/10.1039/b005661h.

    Article  Google Scholar 

  52. E. S. Bazhina, G. G. Aleksandrov, A. A. Sidorov, and I. L. Eremenko. The formation of polymeric structures in the M2+–VO2+ systems (M2+ = Sr2+, Ca2+) containing substituted malonate anions. Russ. J. Coord. Chem., 2015, 41, 730-740. https://doi.org/10.1134/S1070328415110019.

    Article  CAS  Google Scholar 

  53. E. N. Zorina-Tikhonova, A. S. Chistyakov, M. A. Kiskin, A. V. Vologzhanina, A. A. Sidorov, and I. L. Eremenko. Synthesis and structure of Zn(II) complexes with cyclobutane-1,1-dicarboxylic acid anions and calcium and barium cations. Russ. J. Coord. Chem., 2021, 47, 409-416.

    Article  CAS  Google Scholar 

  54. N. V. Gogoleva, M. A. Shmelev, I. S. Evstifeev, S. A. Nikolaevskii, G. G. Aleksandrov, M. A. Kiskin, Zh. V. Dobrokhotova, A. A. Sidorov, and I. L. Eremenko. Heterometallic trinuclear {CdIIMII–CdII} pivalates (M = Mg, Ca, or Sr): Ways of assembly and structural features. Russ. Chem. Bull., 2016, 65, 181-190. https://doi.org/10.1007/s11172-016-1281-7

    Article  CAS  Google Scholar 

  55. E. S. Bazhina, M. A. Shmelev, A. A. Korlyukov, M. A. Kiskin, and I. L. Eremenko. Effect of synthesis conditions on the composition and structure of chromium(III) complexes with cyclobutane-1,1-dicarboxylic acid anions. Russ. J. Coord. Chem., 2021, 47, 105-116. https://doi.org/10.1134/S1070328421020019

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 19-73-10181-P). The CHNS analysis, IR spectroscopy, and XRD analysis were performed using the equipment of the JRC PMR IGIC RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Bazhina.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 4, 108431.https://doi.org/10.26902/JSC_id108431

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhina, E.S., Shmelev, M.A., Kiskin, M.A. et al. Crystallization Features of LiI-CrIII Coordination Compounds with Cyclobutane-1,1-Dicarboxylic Acid Anions. J Struct Chem 64, 550–562 (2023). https://doi.org/10.1134/S0022476623040030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623040030

Keywords

Navigation