Skip to main content
Log in

Structure and Cytotoxic Activity of the Manganese(II) Complex with 5-Methyltetrazole and 4,7-Dimethyl-1,10-Phenanthroline

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A novel mononuclear manganese(II) complex with 5-methyltetrazole and 4,7-dimethyl-1,10-phenanthroline is synthesized and characterized by physico-chemical methods (elemental and powder XRD analyses, IR spectroscopy). It is shown by the single-crystal XRD analysis that the coordination environment of the manganese(II) atom is a distorted octahedron. The stability of the complex in an aqueous solution and in phosphate-buffered saline is studied by optical spectroscopy. The cytotoxic activity of the obtained compound is studied on human laryngeal carcinoma cells (Hep-2) and non-cancerous human fibroblasts (MRC-5). The complex exhibits pronounced cytotoxic properties in the studied concentration range: IC50 is 11.1±0.4 µM on the Hep-2 cancer cell line and 0.63±0.05 µM on the MRC-5 line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. K. J. Horning, S. W. Caito, K. G. Tipps, A. B. Bowman, and M. Aschner. Manganese is essential for neuronal health. Annu. Rev. Nutr., 2015, 35(1), 71-108. https://doi.org/10.1146/annurev-nutr-071714-034419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. R. P. Bowler, H. Sheng, J. J. Enghild, R. D. Pearlstein, D. S. Warner, and J. D. Crapo. A catalytic antioxidant (AEOL 10150) attenuates expression of inflammatory genes in stroke. Free Radicals Biol. Med., 2002, 33(8), 1141-1152. https://doi.org/10.1016/s0891-5849(02)01008-0

    Article  CAS  PubMed  Google Scholar 

  3. D. Ganesh, P. Kumarathasan, E. M. Thomson, C. St-Germain, E. Blais, J. Crapo, and R. Vincent. Impact of superoxide dismutase mimetic AEOL 10150 on the endothelin system of Fischer 344 rats. PLoS One, 2016, 11(3), e0151810. https://doi.org/10.1371/journal.pone.0151810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Z. N. Rabbani, F. K. Salahuddin, P. Yarmolenko, I. Batinic-Haberle, B. A. Thrasher, B. Gauter-Fleckenstein, M. W. Dewhirst, M. S. Anscher, and Z. Vujaskovic. Low molecular weight catalytic metalloporphyrin antioxidant AEOL 10150 protects lungs from fractionated radiation. Free Radicals Res., 2007, 41(11), 1273-1282. https://doi.org/10.1080/10715760701689550

    Article  CAS  PubMed  Google Scholar 

  5. K. Himori, M. Abe, D. Tatebayashi, J. Lee, H. Westerblad, J. T. Lanner, and T. Yamada. Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension. PLoS One, 2017, 12(2), e0169146. https://doi.org/10.1371/journal.pone.0169146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. C. Thiemermann, P. K. Chatterjee, M. A. Shape, A. Pinto, M. C. McDonald, and N. S. Wayman. Superoxide dismutase mimetic with catalase activity, EUK-134, attenuates the multiple organ injury and dysfunction caused by endotoxin in the rat. Med. Sci. Monit., 2002, 8, BR1-7, ID 420950.

  7. P. K. Chatterjee, N. S. A. Patel, E. O. Kvale, P. A. J. Brown, K. N. Stewart, H. Mota-Filipe, M. A. Sharpe, R. Di Paola, S. Cuzzocrea, and C. Thiemermann. EUK-134 reduces renal dysfunction and injury caused by oxidative and nitrosative stress of the kidney. Am. J. Nephrol., 2004, 24(2), 165-177. https://doi.org/10.1159/000076547

    Article  CAS  PubMed  Google Scholar 

  8. T. T. H. Pham, W.-Y. Huang, C.-S. Chen, W.-T. Chiu, and H.-S. Chuang. Effects of electrotactic exercise and antioxidant EUK-134 on oxidative stress relief in Caenorhabditis elegans. PLoS One, 2021, 16(1), e0245474. https://doi.org/10.1371/journal.pone.0245474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. K. Himori, M. Abe, D. Tatebayashi, J. Lee, H. Westerblad, J. T. Lanner, and T. Yamada. Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension. PLoS One, 2017, 12(2), e0169146. https://doi.org/10.1371/journal.pone.0169146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C. K. Murphy, E. G. Fey, B. A. Watkins, V. Wong, D. Rothstein, and S. T. Sonis. Efficacy of superoxide dismutase mimetic M40403 in attenuating radiation-induced oral mucositis in hamsters. Clin. Cancer Res., 2008, 14(13), 4292-4297. https://doi.org/10.1158/1078-0432.ccr-07-4669

    Article  CAS  PubMed  Google Scholar 

  11. J. S. Thompson, Y. Chu, J. Glass, A. A. Tapp, and S. A. Brown. The manganese superoxide dismutase mimetic, M40403, protects adult mice from lethal total body irradiation. Free Radicals Res., 2010, 44(5), 529-540. https://doi.org/10.3109/10715761003649578

    Article  CAS  PubMed  Google Scholar 

  12. R. Filograna, V. K. Godena, A. Sanchez-Martinez, E. Ferrari, L. Casella, M. Beltramini, L. Bubacco, A. J. Whitworth, and M. Bisaglia. Superoxide dismutase (SOD)-mimetic M40403 is protective in cell and fly models of paraquat toxicity. J. Biol. Chem., 2016, 291(17), 9257-9267. https://doi.org/10.1074/jbc.m115.708057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. K. Yim, K. M. Kim, C.-H. Lee, E.-K. Song, S. O. Lee, S. W. Kim, I. H. Kim, S.-H. Kim, S. Y. Seo, and S. T. Lee. The superoxide dismutase mimetic M40403, improves 5-fluorouracil-induced small intestinal mucositis in a mouse model. In Vivo, 2021, 35(3), 1485-1497. https://doi.org/10.21873/invivo.12401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. W. E. Samlowski, R. Petersen, S. Cuzzocrea, H. Macarthur, D. Burton, J. R. McGregor, and D. Salvemini. A nonpeptidyl mimic of superoxide dismutase, M40403, inhibits dose-limiting hypotension associated with interleukin-2 and increases its antitumor effects. Nat. Med., 2003, 9(6), 750-755. https://doi.org/10.1038/nm874

    Article  CAS  PubMed  Google Scholar 

  15. M. Zampakou, A. G. Hatzidimitriou, A. N. Papadopoulos, and G. Psomas. Neutral and cationic manganese(II)-diclofenac complexes: structure and biological evaluation. J. Coord. Chem., 2015, 68(24), 4355-4372. https://doi.org/10.1080/00958972.2015.1098633

    Article  CAS  Google Scholar 

  16. A. Frei, J. Zuegg, A. G. Elliott, M. Baker, S. Braese, C. Brown, F. Chen, C. G. Dowson, G. Dujardin, N. Jung, A. P. King, A. M. Mansour, M. Massi, J. Moat, H. A. Mohamed, A. K. Renfrew, P. J. Rutledge, P. J. Sadler, M. H. Todd, C. E. Willans, J. J. Wilson, M. A. Cooper, and M. A. T. Blaskovich. Metal complexes as a promising source for new antibiotics. Chem. Sci., 2020, 11(10), 2627-2639. https://doi.org/10.1039/c9sc06460e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A. Jabłońska-Wawrzycka, P. Rogala, G. Czerwonka, S. Michałkiewicz, M. Hodorowicz, K. Gałczyńska, B. Cieślak, and P. Kowalczyk. Tuning anti-biofilm activity of manganese(II) complexes: linking biological effectiveness of heteroaromatic complexes of alcohol, aldehyde, ketone, and carboxylic acid with structural effects and redox activity. Int. J. Mol. Sci., 2021, 22(9), 4847. https://doi.org/10.3390/ijms22094847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. B. Ali and M. A. Iqbal. Coordination complexes of manganese and their biomedical applications. ChemistrySelect, 2017, 2(4), 1586-1604. https://doi.org/10.1002/slct.201601909

    Article  CAS  Google Scholar 

  19. M. Kofen, A. G. Harter, T. M. Klapötke, and J. Stierstorfer. 1,5-Dimethyltetrazole as a ligand in energetic 3d5 to 3d10-metal coordination compounds. Energ. Mater. Front., 2022, 3(3), 111-121. https://doi.org/10.1016/j.enmf.2022.07.004

    Article  CAS  Google Scholar 

  20. J. Dudley, L. Feinn, H. DeFrancesco, E. Lindsay, A. Coca, and E. L. Roberts. Antibacterial assessment of heteroaryl, vinyl, benzyl, and alkyl tetrazole compounds. Med. Chem., 2018, 14(6), 550-555. https://doi.org/10.2174/1573406413666171120162420

    Article  CAS  Google Scholar 

  21. F. Gao, J. Xiao, and G. Huang. Current scenario of tetrazole hybrids for antibacterial activity. Eur. J. Med. Chem., 2019, 184, 111744. https://doi.org/10.1016/j.ejmech.2019.111744

    Article  CAS  PubMed  Google Scholar 

  22. S.-Q. Wang, Y.-F. Wang, and Z. Xu. Tetrazole hybrids and their antifungal activities. Eur. J. Med. Chem., 2019, 170, 225-234. https://doi.org/10.1016/j.ejmech.2019.03.023

    Article  CAS  PubMed  Google Scholar 

  23. E. A. Popova, A. V. Protas, and R. E. Trifonov. Tetrazole derivatives as promising anticancer agents. Anti-Cancer Agents Med. Chem., 2018, 17(14). https://doi.org/10.2174/1871520617666170327143148

    Article  Google Scholar 

  24. C. Gao, L. Chang, Z. Xu, X.-F. Yan, C. Ding, F. Zhao, X. Wu, and L.-S. Feng. Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. Eur. J. Med. Chem., 2019, 163, 404-412. https://doi.org/10.1016/j.ejmech.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  25. L. V. Myznikov, A. Hrabalek, and G. I. Koldobskii. Drugs in the tetrazole series. (Review). Chem. Heterocycl. Compd., 2007, 43(1), 1-9. https://doi.org/10.1007/s10593-007-0001-5

    Article  CAS  Google Scholar 

  26. J. A. Eremina, E. V. Lider, N. V. Kuratieva, D. G. Samsonenko, L. S. Klyushova, D. G. Sheven′, R. E. Trifonov, and V. A. Ostrovskii. Synthesis and crystal structures of cytotoxic mixed-ligand copper(II) complexes with alkyl tetrazole and polypyridine derivatives. Inorg. Chim. Acta, 2021, 516, 120169. https://doi.org/10.1016/j.ica.2020.120169

    Article  CAS  Google Scholar 

  27. APEX2, ver. 2.0; SAINT, ver. 8.18c; SADABS ver. 2.11. Madison, Wisconsin, USA: Bruker Advanced X-ray Solutions, 2000-2012.

  28. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  29. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  30. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  31. J. A. Eremina, E. A. Ermakova, K. S. Smirnova, L. S. Klyushova, A. S. Berezin, T. S. Sukhikh, A. A. Zubenko, L. N. Fetisov, K. N. Kononenko, and E. V. Lider. Cu(II), Co(II), Mn(II) complexes with 5-phenyltetrazole and polypyridyl ligands: Synthesis, characterization and evaluation of the cytotoxicity and antimicrobial activity. Polyhedron, 2021, 206, 115352. https://doi.org/10.1016/j.poly.2021.115352

    Article  CAS  Google Scholar 

  32. E. A. Ermakova, J. A. Eremina, K. S. Smirnova, L. S. Klyushova, D. B. Kal′nyi, T. S. Sukhikh, A. A. Zubenko, L. N. Fetisov, K. N. Kononenko, and E. V. Lider. Mixed-ligand manganese(II) complexes with 5-phenyltetrazole and polypyridine derivatives: Synthesis, crystal structures and biological activity. Results Chem., 2021, 3, 100239. https://doi.org/10.1016/j.rechem.2021.100239

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project 20-73-10207).

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. 121031700321-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Lider.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 4, 108300.https://doi.org/10.26902/JSC_id108300

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermakova, E.A., Golubeva, Y.A., Smirnova, K.S. et al. Structure and Cytotoxic Activity of the Manganese(II) Complex with 5-Methyltetrazole and 4,7-Dimethyl-1,10-Phenanthroline. J Struct Chem 64, 540–549 (2023). https://doi.org/10.1134/S0022476623040029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623040029

Keywords

Navigation