Skip to main content
Log in

X-Ray Diffraction Data on the Structure of the Nearest Environment of Ions in Aqueous Solutions of Calcium Nitrate

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Ion coordination is determined by the X-ray diffraction analysis in aqueous solutions of calcium nitrate in a wide concentration range. In the saturated solution, the cation coordinates five water molecules and one nitrate ion in the monodentate fashion. As the solution is diluted, the number of water molecules coordinated in the first shell of the Ca2+ ion gradually increases to six, and the second coordination sphere of the cation and the hydration shell of the anion begin to form. Ion pairs govern the structures of solutions in the entire concentration range studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. P. R. Smirnov and V. N. Trostin. Structural parameters of Ca2+ ion nearest neighbors in aqueous solution of its salts. Russ. J. Gen. Chem., 2009, 79(8), 1600-1607. https://doi.org/10.1134/s1070363209080027

    Article  CAS  Google Scholar 

  2. F. Bruni, S. Imberti, R. Mancinelli, and M. A. Ricci. Aqueous solutions of divalent chlorides: Ions hydration shell and water structure. J. Chem. Phys., 2012, 136(6), 064520. https://doi.org/10.1063/1.3684633

    Article  CAS  PubMed  Google Scholar 

  3. S. Bogatko, E. Cauët, E. Bylaska, G. Schenter, J. Fulton, and J. Weare. The aqueous Ca2+ system, in comparison with Zn2+, Fe3+, and Al3+: An ab initio molecular dynamics study. Chem. - Eur. J., 2013, 19(9), 3047-3060. https://doi.org/10.1002/chem.201202821

    Article  CAS  PubMed  Google Scholar 

  4. W. A. Adeagbo, N. L. Doltsinis, M. Burchard, W. V. Maresch, and T. Fockenberg. Ca2+ solvation as a function of p, T, and pH from ab initio simulation. J. Chem. Phys., 2012, 137(12), 124502. https://doi.org/10.1063/1.4754129

    Article  CAS  PubMed  Google Scholar 

  5. T. Ohkubo, T. Kusudo, and Y. Kuroda. Asymmetric hydration structure around calcium ion restricted in micropores fabricated in activated carbons. J. Phys. Condens. Matter, 2016, 28(46), 464003. https://doi.org/10.1088/0953-8984/28/46/464003

    Article  CAS  PubMed  Google Scholar 

  6. Á. Muñoz Noval, D. Nishio, T. Kuruma, and S. Hayakawa. Coordination and structure of Ca(II)-acetate complexes in aqueous solution studied by a combination of Raman and XAFS spectroscopies. J. Mol. Struct., 2018, 1161, 512-518. https://doi.org/10.1016/j.molstruc.2018.02.075

    Article  CAS  Google Scholar 

  7. T. Yamaguchi, M. Nishino, K. Yoshida, M. Takumi, K. Nagata, and T. Hattori. Ion hydration and association in an aqueous calcium chloride solution in the GPa range. Eur. J. Inorg. Chem., 2019, 2019(8), 1170-1177. https://doi.org/10.1002/ejic.201900016

    Article  CAS  Google Scholar 

  8. L. Zhou, J. Xu, L. Xu, and X. Wu. Importance of van der Waals effects on the hydration of metal ions from the Hofmeister series. J. Chem. Phys., 2019, 150(12), 124505. https://doi.org/10.1063/1.5086939

    Article  CAS  PubMed  Google Scholar 

  9. C. Liu, F. Min, L. Liu, and J. Chen. Hydration properties of alkali and alkaline earth metal ions in aqueous solution: A molecular dynamics study. Chem. Phys. Lett., 2019, 727, 31-37. https://doi.org/10.1016/j.cplett.2019.04.045

    Article  CAS  Google Scholar 

  10. G. Ren, Y. Ha, Y.-S. Liu, X. Feng, N. Zhang, P. Yu, L. Zhang, W. Yang, J. Feng, J. Guo, and X. Liu. Deciphering the solvent effect for the solvation structure of Ca2+ in polar molecular liquids. J. Phys. Chem. B, 2020, 124(16), 3408-3417. https://doi.org/10.1021/acs.jpcb.0c02437

    Article  CAS  PubMed  Google Scholar 

  11. T. Saisopa, K. Klaiphet, P. Songsiriritthigul, W. Pokapanich, S. Tangsukworakhun, C. Songsiriritthigul, C. Saiyasombat, Y. Rattanachai, H. Yuzawa, N. Kosugi, and D. Céolin. Investigation of solvated calcium dication structure in pure water, methanol, and ethanol solutions by means of K and L2,3-edges X-ray absorption spectroscopy. J. Electron Spectros. Relat. Phenom., 2020, 244, 146984. https://doi.org/10.1016/j.elspec.2020.146984

    Article  CAS  Google Scholar 

  12. L. Tonti and F. M. Floris. How increasing pressure affects the ion hydration structure and shell properties at ambient temperature. J. Mol. Liq., 2021, 328, 115341. https://doi.org/10.1016/j.molliq.2021.115341

    Article  CAS  Google Scholar 

  13. M. Kohagen, P. E. Mason, and P. Jungwirth. Accurate description of calcium solvation in concentrated aqueous solutions. J. Phys. Chem. B, 2014, 118(28), 7902-7909. https://doi.org/10.1021/jp5005693

    Article  CAS  PubMed  Google Scholar 

  14. V.-T. Pham and J. L. Fulton. Ion-pairing in aqueous CaCl2 and RbBr solutions: Simultaneous structural refinement of XAFS and XRD data. J. Chem. Phys., 2013, 138(4), 044201. https://doi.org/10.1063/1.4775588

    Article  CAS  PubMed  Google Scholar 

  15. W. W. Rudolph and G. Irmer. Hydration of the calcium(II) ion in an aqueous solution of common anions (ClO4−, Cl−, Br−, and NO3−). Dalton Trans., 2013, 42(11), 3919. https://doi.org/10.1039/c2dt31718d

    Article  CAS  PubMed  Google Scholar 

  16. B. Das and A. Chandra. Ab initio molecular dynamics study of aqueous solutions of magnesium and calcium nitrates: Hydration shell structure, dynamics and vibrational echo spectroscopy. J. Phys. Chem. B, 2022, 126(2), 528-544. https://doi.org/10.1021/acs.jpcb.1c08545

    Article  CAS  PubMed  Google Scholar 

  17. G. Wang, Y. Zhou, Y. Toshio, H. Liu, F. Zhu, and Z. Wu. Structure of aqueous CaCl2 solutions by X-ray scattering and density functional theory. Russ. J. Phys. Chem. A, 2022, 96(S1), S68-S76. https://doi.org/10.1134/s0036024422140242

    Article  CAS  Google Scholar 

  18. F. Zhu, H. Zhou, X. Wang, Y. Zhou, H. Liu, C. Fang, and Y. Fang. Raman spectroscopy and ab initio quantum chemical calculations of ion association behavior in calcium nitrate solution. J. Raman Spectrosc., 2018, 49(5), 852-861. https://doi.org/10.1002/jrs.5349

    Article  CAS  Google Scholar 

  19. P. Novotny and O. Sohnel. Densities of binary aqueous solutions of 306 inorganic substances. J. Chem. Eng. Data, 1988, 33(1), 49-55. https://doi.org/10.1021/je00051a018

    Article  CAS  Google Scholar 

  20. OriginPro 7.5. Northampton, MA, USA: OriginLab Corporation, 1991-2003.

  21. G. Johansson and M. Sandstrom. Computer-programs for analysis of data on X-ray-diffraction by liquids. Chem. Scr., 1973, 4(5), 195-198.

  22. J. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer, and R. J. Howerton. Atomic form factors, incoherent scattering functions, and photon scattering cross sections. J. Phys. Chem. Ref. Data, 1975, 4(3), 471-538. https://doi.org/10.1063/1.555523

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by RFBR and Ivanovo Oblast’ as a part of scientific project No. 20-43-370001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Smirnov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 3, 107966.https://doi.org/10.26902/JSC_id107966

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, P.R., Grechin, O.V. X-Ray Diffraction Data on the Structure of the Nearest Environment of Ions in Aqueous Solutions of Calcium Nitrate. J Struct Chem 64, 486–492 (2023). https://doi.org/10.1134/S0022476623030137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623030137

Keywords

Navigation