Skip to main content
Log in

Synthesis, Characterization and Crystal Structures of Thiosemicarbazones with Urease Inhibitory Activity

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Thiosemicarbazones are biological active compounds. In this work, five new thiosemicarbazones were prepared and structurally characterized by elemental analysis, 1H NMR and IR spectra, as well as single crystal X-ray diffraction. The compounds were evaluated for their urease inhibitory activities. Among the compounds, those with hydroxyl substituent groups have effective activity with IC50 values of 1.5-2.3 μmol/L. Docking simulation was performed to insert the molecules of the compounds into the crystal structure of Jack bean urease at the active site to determine their probable binding modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. L. V. Modolo, A. X. de Souza, L. P. Horta, D. P. Araujo, and Â. de Fátima. An overview on the potential of natural products as ureases inhibitors: A review. J. Adv. Res., 2015, 6(1), 35-44. https://doi.org/10.1016/j.jare.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  2. H. Cantarella, R. Otto, J. R. Soares, and A. G. de B. Silva. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res., 2018, 13, 19-27. https://doi.org/10.1016/j.jare.2018.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. Kazmi, I. Khan, A. Khan, S. A. Halim, A. Saeed, S. Mehsud, A. Al-Harrasi, and A. Ibrar. Developing new hybrid scaffold for urease inhibition based on carbazole-chalcone conjugates: Synthesis, assessment of therapeutic potential and computational docking analysis. Bioorg. Med. Chem., 2019, 27(22), 115123. https://doi.org/10.1016/j.bmc.2019.115123

    Article  CAS  Google Scholar 

  4. Q. Liu, W.-K. Shi, S.-Z. Ren, W.-W. Ni, W.-Y. Li, H.-M. Chen, P. Liu, J. Yuan, X.-S. He, J.-J. Liu, P. Cao, P.-Z. Yang, Z.-P. Xiao, and H.-L. Zhu. Arylamino containing hydroxamic acids as potent urease inhibitors for the treatment of Helicobacter pylori infection. Eur. J. Med. Chem., 2018, 156, 126-136. https://doi.org/10.1016/j.ejmech.2018.06.065

    Article  CAS  PubMed  Google Scholar 

  5. W.-K. Shi, R.-C. Deng, P.-F. Wang, Q.-Q. Yue, Q. Liu, K.-L. Ding, M.-H. Yang, H.-Y. Zhang, S.-H. Gong, M. Deng, W.-R. Liu, Q.-J. Feng, Z.-P. Xiao, and H.-L. Zhu. 3-Arylpropionylhydroxamic acid derivatives as Helicobacter pylori urease inhibitors: Synthesis, molecular docking and biological evaluation. Bioorg. Med. Chem., 2016, 24(19), 4519-4527. https://doi.org/10.1016/j.bmc.2016.07.052

    Article  CAS  Google Scholar 

  6. W.-Q. Song, M.-L. Liu, S.-Y. Li, and Z.-P. Xiao. Recent efforts in the discovery of urease inhibitor identifications. Curr. Top. Med. Chem., 2022, 22(2), 95-107. https://doi.org/10.2174/1568026621666211129095441

    Article  CAS  Google Scholar 

  7. M. Liu, W. Li, H. Fang, Y. Ye, S. Li, W. Song, Z. Xiao, H. Ouyang, and H. Zhu. Synthesis and biological evaluation of dithiobisacetamides as novel urease inhibitors. ChemMedChem, 2022, 17(2). https://doi.org/10.1002/cmdc.202100618

    Article  PubMed  PubMed Central  Google Scholar 

  8. W.-W. Ni, H.-L. Fang, Y.-X. Ye, W.-Y. Li, L. Liu, Z.-J. Fu, Dawalamu, W.-Y. Zhu, K. Li, F. Li, X. Zou, H. Ouyang, Z.-P. Xiao, and H.-L. Zhu. Synthesis and structure-activity relationship studies of N-monosubstituted aroylthioureas as urease inhibitors. Med. Chem., 2021, 17(9), 1046-1059. https://doi.org/10.2174/1573406416999200818152440

    Article  CAS  Google Scholar 

  9. W.-Y. Li, W.-W. Ni, Y.-X. Ye, H.-L. Fang, X.-M. Pan, J.-L. He, T.-L. Zhou, J. Yi, S.-S. Liu, M. Zhou, Z.-P. Xiao, and H.-L. Zhu. N-monoarylacetothioureas as potent urease inhibitors: synthesis, SAR, and biological evaluation. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 404-413. https://doi.org/10.1080/14756366.2019.1706503

    Article  CAS  PubMed Central  Google Scholar 

  10. W.-W. Ni, H.-L. Fang, Y.-X. Ye, W.-Y. Li, C.-P. Yuan, D.-D. Li, S.-J. Mao, S.-E. Li, Q.-H. Zhu, H. Ouyang, Z.-P. Xiao, and H.-L. Zhu. N-monosubstituted thiosemicarbazide as novel Ure inhibitors: synthesis, biological evaluation and molecular docking. Future Med. Chem., 2020, 12(18), 1633-1645. https://doi.org/10.4155/fmc-2020-0048

    Article  CAS  PubMed  Google Scholar 

  11. W.-J. Mao, P.-C. Lv, L. Shi, H.-Q. Li, and H.-L. Zhu. Synthesis, molecular docking and biological evaluation of metronidazole derivatives as potent Helicobacter pylori urease inhibitors. Bioorg. Med. Chem., 2009, 17(21), 7531-7536. https://doi.org/10.1016/j.bmc.2009.09.018

    Article  CAS  Google Scholar 

  12. K. M. Khan, F. Rahim, A. Khan, M. Shabeer, S. Hussain, W. Rehman, M. Taha, M. Khan, S. Perveen, and M. I. Choudhary. Synthesis and structure-activity relationship of thiobarbituric acid derivatives as potent inhibitors of urease. Bioorg. Med. Chem., 2014, 22(15), 4119-4123. https://doi.org/10.1016/j.bmc.2014.05.057

    Article  CAS  Google Scholar 

  13. Z.-P. Xiao, W.-K. Shi, P.-F. Wang, W. Wei, X.-T. Zeng, J.-R. Zhang, N. Zhu, M. Peng, B. Peng, X.-Y. Lin, H. Ouyang, X.-C. Peng, G.-C. Wang, and H.-L. Zhu. Synthesis and evaluation of N-analogs of 1,2-diarylethane as Helicobacter pylori urease inhibitors. Bioorg. Med. Chem., 2015, 23(15), 4508-4513. https://doi.org/10.1016/j.bmc.2015.06.014

    Article  CAS  Google Scholar 

  14. A. Rauf, S. Shahzad, M. Bajda, M. Yar, F. Ahmed, N. Hussain, M. N. Akhtar, A. Khan, and J. Jończyk. Design and synthesis of new barbituric- and thiobarbituric acid derivatives as potent urease inhibitors: Structure activity relationship and molecular modeling studies. Bioorg. Med. Chem., 2015, 23(17), 6049-6058. https://doi.org/10.1016/j.bmc.2015.05.038

    Article  CAS  Google Scholar 

  15. I. Shabeeb, L. Al-Essa, M. Shtaiwi, E. Al-Shalabi, E. Younes, R. Okasha, and M. Abu Sini. New hydrazide-hydrazone derivatives of quinoline 3-carboxylic acid hydrazide: Synthesis, theoretical modeling and antibacterial evaluation. Lett. Org. Chem., 2019, 16(5), 430-436. https://doi.org/10.2174/1570178616666181227122326

    Article  CAS  Google Scholar 

  16. K. Pyta, A. Janas, M. Szukowska, P. Pecyna, M. Jaworska, M. Gajecka, F. Bartl, and P. Przybylski. Synthesis, docking and antibacterial studies of more potent amine and hydrazone rifamycin congeners than rifampicin. Eur. J. Med. Chem., 2019, 167, 96-104. https://doi.org/10.1016/j.ejmech.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  17. I. Amine Khodja, H. Boulebd, C. Bensouici, and A. Belfaitah. Design, synthesis, biological evaluation, molecular docking, DFT calculations and in silico ADME analysis of (benz)imidazole-hydrazone derivatives as promising antioxidant, antifungal, and anti-acetylcholinesterase agents. J. Mol. Struct., 2020, 1218, 128527. https://doi.org/10.1016/j.molstruc.2020.128527

    Article  CAS  Google Scholar 

  18. A.-E. Dascalu, A. Ghinet, E. Lipka, C. Furman, B. Rigo, A. Fayeulle, and M. Billamboz. Design, synthesis and evaluation of hydrazine and acyl hydrazone derivatives of 5-pyrrolidin-2-one as antifungal agents. Bioorg. Med. Chem. Lett., 2020, 30(13), 127220. https://doi.org/10.1016/j.bmcl.2020.127220

    Article  CAS  Google Scholar 

  19. H. He, X. Wang, L. Shi, W. Yin, Z. Yang, H. He, and Y. Liang. Synthesis, antitumor activity and mechanism of action of novel 1,3-thiazole derivatives containing hydrazide–hydrazone and carboxamide moiety. Bioorg. Med. Chem. Lett., 2016, 26(14), 3263-3270. https://doi.org/10.1016/j.bmcl.2016.05.059

    Article  CAS  Google Scholar 

  20. E. M. Güngör, M. D. Altıntop, B. Sever, and G. A. Çiftçi. Design, Synthesis, in vitro and in silico evaluation of new hydrazonebased antitumor agents as potent akt inhibitors. Lett. Drug Des. Discovery, 2020, 17(11), 1380-1392. https://doi.org/10.2174/1570180817999200618163507

    Article  CAS  Google Scholar 

  21. M. A. M. B. Medeiros, M. Gama e Silva, J. de Menezes Barbosa, É. Martins de Lavor, T. F. Ribeiro, C. A. F. Macedo, L. A. M. de Souza Duarte-Filho, T. A. Feitosa, J. de Jesus Silva, H. H. Fokoue, C. R. M. Araújo, A. de Assis Gonsalves, L. Augusto de Araújo Ribeiro, and J. R. G. da S. Almeida. Antinociceptive and anti-inflammatory effects of hydrazone derivatives and their possible mechanism of action in mice. PLoS One, 2021, 16(11), e0258094. https://doi.org/10.1371/journal.pone.0258094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M. Song, B. Liu, S. Yu, S. He, Y. Liang, S. Li, Q. Chen, and X. Deng. New hydrazone derivatives of pyrazole-4-carboxaldehydes exhibited anti-inflammatory properties. Lett. Drug Des. Discovery, 2020, 17(4), 502-511. https://doi.org/10.2174/1570180816666190731113441

    Article  CAS  Google Scholar 

  23. F. Beygi, A. Mostoufi, and A. Mojaddami. Novel hydrazone derivatives of 3-bromopyruvate: synthesis, evaluation of the cytotoxic effects, molecular docking and ADME studies. Chem. Biodiversity, 2022, 19(6). https://doi.org/10.1002/cbdv.202100754

    Article  Google Scholar 

  24. P. G. Avaji, C. H. Vinod Kumar, S. A. Patil, K. N. Shivananda, and C. Nagaraju. Synthesis, spectral characterization, in-vitro microbiological evaluation and cytotoxic activities of novel macrocyclic bis hydrazone. Eur. J. Med. Chem., 2009, 44(9), 3552-3559. https://doi.org/10.1016/j.ejmech.2009.03.032

    Article  CAS  PubMed  Google Scholar 

  25. S. U. Qazi, A. Naz, A. Hameed, F. A. Osra, S. Jalil, J. Iqbal, S. A. A. Shah, and A. Z. Mirza. Semicarbazones, thiosemicarbazone, thiazole and oxazole analogues as monoamine oxidase inhibitors: Synthesis, characterization, biological evaluation, molecular docking, and kinetic studies. Bioorg. Chem., 2021, 115, 105209. https://doi.org/10.1016/j.bioorg.2021.105209

    Article  CAS  PubMed  Google Scholar 

  26. Z.-X. He, J.-L. Huo, Y.-P. Gong, Q. An, X. Zhang, H. Qiao, F.-F. Yang, X.-H. Zhang, L.-M. Jiao, H.-M. Liu, L.-Y. Ma, and W. Zhao. Design, synthesis and biological evaluation of novel thiosemicarbazone-indole derivatives targeting prostate cancer cells. Eur. J. Med. Chem., 2021, 210, 112970. https://doi.org/10.1016/j.ejmech.2020.112970

    Article  CAS  PubMed  Google Scholar 

  27. B. Z. Sibuh, P. K. Gupta, P. Taneja, S. Khanna, P. Sarkar, S. Pachisia, A. A. Khan, N. K. Jha, K. Dua, S. K. Singh, S. Pandey, P. Slama, K. K. Kesari, and S. Roychoudhury. Synthesis, in silico study, and anti-cancer activity of thiosemicarbazone derivatives. Biomedicines, 2021, 9(10), 1375. https://doi.org/10.3390/biomedicines9101375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. K. M. Khan, F. Rahim, A. Khan, S. Ali, M. Taha, S. M. Saad, M. Khan, Najeebullah, A. Shaikh, S. Perveen, and M. I. Choudhary. Synthesis of benzophenone hydrazone analogs and TH. J. Chem. Soc. Pak., 2015, 37(3), 479-483.

  29. G. Akyüz, F. Ş. Beriş, B. Kahveci, and E. Menteşe. Synthesis of novel 2,3-disubstituted quinazolin-4(3H)-one derivatives containing hydrazone skeleton as potent urease inhibitors and their antimicrobial activities. J. Heterocycl. Chem., 2019, 56(11), 3065-3072. https://doi.org/10.1002/jhet.3703

    Article  CAS  Google Scholar 

  30. S. Ahmad, M. Khan, M. I. A. Shah, M. Ali, A. Alam, M. Riaz, and K. M. Khan. Synthetic transformation of 2-{2-fluoro[1,1-biphenyl]-4-yl} propanoic acid into hydrazide–hydrazone derivatives: in vitro urease inhibition and in silico study. ACS Omega, 2022, 7(49), 45077-45087. https://doi.org/10.1021/acsomega.2c05498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. Khan, G. Ahad, A. Manaf, R. Naz, S. R. Hussain, F. Deeba, S. Shah, A. Khan, M. Ali, K. Zaman, S. Zafar, U. Salar, A. Hameed, and K. M. Khan. Synthesis, in vitro urease inhibitory activity, and molecular docking studies of (perfluorophenyl)hydrazone derivatives. Med. Chem. Res., 2019, 28(6), 873-883. https://doi.org/10.1007/s00044-019-02341-5

    Article  CAS  Google Scholar 

  32. J. Abdullah Al-Mohammadi, M. Taha, F. Rahim, R. Hussain, H. Aldossary, R. Khalid Farooq, A. Wadood, M. Nawaz, M. Salahuddin, K. Mohammed Khan, and N. Uddin. Synthesis, in vitro evaluation, and molecular docking studies of benzofuran based hydrazone a new inhibitors of urease. Arabian J. Chem., 2022, 15(8), 103954. https://doi.org/10.1016/j.arabjc.2022.103954

    Article  CAS  Google Scholar 

  33. N. Baltaş. Synthesis of quinazolinone derivatives containing an acyl hydrazone skeleton as potent anti-urease agents enzyme kinetic studies and anti-oxidant properties. J. Chem. Res., 2022, 46(3), 174751982210965. https://doi.org/10.1177/17475198221096568

    Article  CAS  Google Scholar 

  34. G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. SMART (Version 5.628) and SAINT (Version 6.02). Madison, Wisconsin, USA: Bruker AXS, 1998.

  36. G. M. Sheldrick. SADABS: Program for Empirical Absorption Correction of Area Detector. Göttingen, Germany: University of Göttingen, 1996.

  37. G. M. Sheldrick. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64(1), 112-122. https://doi.org/10.1107/s0108767307043930

    Article  Google Scholar 

  38. P. Nithya, J. Simpson, and S. Govindarajan. Template synthesis, structural variation, thermal behavior and antimicrobial screening of Mn(II), Co(II) and Ni(II) complexes of Schiff base ligands derived from benzyl carbazate and three isomers of acetylpyridine. Inorg. Chim. Acta, 2017, 467, 180-193. https://doi.org/10.1016/j.ica.2017.07.059

    Article  CAS  Google Scholar 

  39. L. J. Farrugia and A. D. Khalaji. Evidence for side-chain π-delocalization in a planar substituted benzene: An experimental and theoretical charge density study on 2,5-dimethoxybenzaldehyde thiosemicarbazone. J. Phys. Chem. A, 2011, 115(45), 12512-12522. https://doi.org/10.1021/jp2026169

    Article  CAS  PubMed  Google Scholar 

  40. H.-J. Zhang, Y. Qian, D.-D. Zhu, X.-G. Yang, and H.-L. Zhu. Synthesis, molecular modeling and biological evaluation of chalcone thiosemicarbazide derivatives as novel anticancer agents. Eur. J. Med. Chem., 2011, 46(9), 4702-4708. https://doi.org/10.1016/j.ejmech.2011.07.016

    Article  CAS  PubMed  Google Scholar 

  41. V. Vrdoljak, M. Cindrić, D. Milić, D. Matković-Čalogović, P. Novak, and B. Kamenar. Synthesis of five new molybdenum(VI) thiosemicarbazonato complexes. Crystal structures of salicylaldehyde and 3-methoxy-salicylaldehyde 4-methylthiosemicarbazones and their molybdenum(VI) complexes. Polyhedron, 2005, 24(13), 1717-1726. https://doi.org/10.1016/j.poly.2005.05.002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.-W. Xue.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 3, 107803.https://doi.org/10.26902/JSC_id107803

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, YJ., Liu, QR. & Xue, LW. Synthesis, Characterization and Crystal Structures of Thiosemicarbazones with Urease Inhibitory Activity. J Struct Chem 64, 462–473 (2023). https://doi.org/10.1134/S0022476623030113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623030113

Keywords

Navigation