Skip to main content
Log in

Crystal Chemical Analysis of Two Modifications of [Pd(NH3)4]3Мо7O24·nH2O. Thermal Decomposition Products

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A comparative crystal chemical analysis of о-[Pd(NH3)4]3Мо7O24·6H2O (а = 17.3472(3) Å, b = 28.9064(4) Å, с = 30.2463(4) Å, space group Ibca, V = 15166.9 Å3, Z = 16) and m-[Pd(NH3)4]3Мо7O24·3H2O (а = 10.6617(2) Å, b = 20.5248(5) Å, с = 16.4676(3) Å, β = 103.0792(10)°, space group P21/n, V = 3510.11(13) Å3, Z = 4) is performed. Thermal decomposition products of o-[Pd(NH3)4]3Мо7O24·6H2O are studied. In the Н2 atmosphere at 900 °C, a mixture of mixed-metal solid solutions based on the Мо bcc lattice and the Pd fcc lattice is formed while in the 90% Не/10% Н2 atmosphere at 910 °C, a mixture of the solid solution based on the Мо bcc lattice and Pd2Mo3N is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. Inorganic Crystal Structure Database, Release 2022. Karlsruhe, Germany: Fashinformationszentrum, 2022.

  2. A. El-Himri, F. Sapiña, R. Ibañez, and A. Beltrán. Pd2Mo3N: a new molybdenum bimetallic interstitial nitride. J. Mater. Chem., 2001, 11(9), 2311-2314. https://doi.org/10.1039/b101616o

    Article  CAS  Google Scholar 

  3. A. I. Gubanov, E. Y. Filatov, E. Y. Semitut, A. I. Smolentsev, P. V. Snytnikov, D. I. Potemkin, and S. V. Korenev. [Pd(NH3)4]MoO4 as a precursor for Pd–Mo-containing catalysts: Thermal behavior, X-ray analysis of the thermolysis products and related catalytic studies. Thermochim. Acta, 2013, 566, 100-104. https://doi.org/10.1016/j.tca.2013.03.036

    Article  CAS  Google Scholar 

  4. S. P. Khranenko, A. S. Sukhikh, V. Y. Komarov, and S. A. Gromilov. Complex salts containing [Pd(NH3)4]2+ cations and and anions: The precursors of Pd–W metal alloys. J. Struct. Chem., 2020, 61(3), 449-455. https://doi.org/10.1134/s0022476620030117

    Article  CAS  Google Scholar 

  5. Powder Diffraction File, PDF-2. Newtown, PA, USA: International Centre for Diffraction Data, 2022.

  6. NETZSCH Thermal Analysis v.4.8.1. Bayern, Germany: NETZSCH-Gerätebau, 2005.

  7. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  8. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  9. F. H. Allen. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58(3), 380-388. https://doi.org/10.1107/s0108768102003890

    Article  Google Scholar 

  10. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, and M. A. Spackman. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr., 2021, 54(3), 1006-1011. https://doi.org/10.1107/s1600576721002910

    Article  CAS  Google Scholar 

  11. A. S. Sukhikh, S. P. Khranenko, A. V. Zadesenets, and S. A. Gromilov. Structural features of mixed anions (Мо7–хWхO24)6– and their packing in the [Pd(NH3)4]3(Мо7–хWxO24)6H2O crystal structure. Crystallogr. Rep., 2022, 67(2), 143-149. https://doi.org/10.1134/s1063774522020213

    Article  CAS  Google Scholar 

  12. S. V. Borisov. Cation sublattices in inorganic compounds. J. Struct. Chem., 1986, 27(3), 486-488. https://doi.org/10.1007/bf00751836

    Article  Google Scholar 

  13. S. A. Gromilov and S. V. Borisov. Using pseudoperiodicity for polycrystal XRD determination of the general structural motif of coordination compounds. J. Struct. Chem., 2003, 44(4), 664-680. https://doi.org/10.1023/b:jory.0000017943.51537.b7

    Article  CAS  Google Scholar 

  14. S. A. Gromilov, E. A. Bykova, and S. V. Borisov. Algorithms, software, and examples of pseudotranslational sublattice analysis for crystal structures. Crystallogr. Rep., 2011, 56(6), 947-952. https://doi.org/10.1134/s1063774511060101

    Article  CAS  Google Scholar 

  15. H. Kleykamp. Constitution and thermodynamics of the Mo–Ru, Mo–Pd, Ru–Pd and Mo–Ru–Pd systems. J. Nucl. Mater., 1989, 167, 49-63. https://doi.org/10.1016/0022-3115(89)90424-8

    Article  Google Scholar 

  16. J. C. Crowhurst, A. F. Goncharov, B. Sadigh, J. M. Zaug, D. Aberg, Y. Meng, and V. B. Prakapenka. Synthesis and characterization of nitrides of iridium and palladium. J. Mater. Res., 2008, 23(1), 1-5. https://doi.org/10.1557/jmr.2008.0027

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. 121031700313-8). The HR SEM analysis was performed using the facilities of the National Center for the Study of Catalysts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gromilov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 3, 107726.https://doi.org/10.26902/JSC_id107726

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhikh, A.S., Khranenko, S.P., Zadesenets, A.V. et al. Crystal Chemical Analysis of Two Modifications of [Pd(NH3)4]3Мо7O24·nH2O. Thermal Decomposition Products. J Struct Chem 64, 450–461 (2023). https://doi.org/10.1134/S0022476623030101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623030101

Keywords

Navigation