Skip to main content
Log in

Synthesis, Crystal Structure, Supramolecular Assembly Inspection by Hirshfeld Surface Analysis and Computational Exploration of 4-Phenyl-6-(p-Tolyl)Pyrimidin-2 (1H)-One (PPTP)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The three-component condensation reaction of 4-methylbenzaldehyde with acetophenone and urea in the presence of CF3COOH was investigated and as a result, 4-phenyl-6-(p-tolyl)pyrimidin-2(1H)-one (PPTP) was synthesized. The structure was determined by single crystal X-rays diffraction analysis which inferred that the PPTP crystallized in monoclinic crystal system with space group P21/c. The dihedral angles between the aromatic rings indicate that the molecule is non-planar. The crystal packing is mainly stabilized by N–H⋯O and C–H⋯O bonding which is further stabilized by off-set π⋯π stacking interactions. The supramolecular assembly is further investigated by Hirshfeld surface analysis. The mechanical behaviour is predicted by the void analysis Moreover, the computational study is carried out for finding the interaction energy between molecular pair by using B3LYP/6-31G(d,p) electron density model. The study inferred the role of various types of interaction energies in stabilizing the crystal packing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. M. Nikpassand and E. Hoseinnezhad. Green synthesis of 4,6-bisarylpyrimidin-2(1H)-ones and azo-linked 4-arylpyrimidin-2(1H)-ones using NiFe2O4@SiO2Pr@glucose amine as a mild nano catalyst. Arabian J. Chem., 2020, 13(12), 8995-9004. https://doi.org/10.1016/j.arabjc.2020.10.022

    Article  CAS  Google Scholar 

  2. M. A. Pasha and S. Nagashree. A one-pot three-component synthesis of 4,6-diarylpyrimidin-2(1H)-ones (DAPMs) using atomized sodium in THF under sonic condition. Ultrason. Sonochem., 2014, 21(4), 1279-1283. https://doi.org/10.1016/j.ultsonch.2013.12.021

    Article  CAS  PubMed  Google Scholar 

  3. S. S. Sabri, A. Q. Hussein, and F. H. Al-Hajjar. Reactions of .alpha.,.beta.-unsaturated ketones with urea. Synthesis and spectral properties of 2(1H)-pyrimidinone derivatives. J. Chem. Eng. Data, 1985, 30(4), 512-514. https://doi.org/10.1021/je00042a047

    Article  CAS  Google Scholar 

  4. R. Kaur, S. Chaudhary, K. Kumar, M. K. Gupta, and R. K. Rawal. Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. Eur. J. Med. Chem., 2017, 132, 108-134. https://doi.org/10.1016/j.ejmech.2017.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Â. de Fátima, T. C. Braga, L. da S. Neto, B. S. Terra, B. G. F. Oliveira, D. L. da Silva, and L. V. Modolo. A mini-review on Biginelli adducts with notable pharmacological properties. J. Adv. Res., 2015, 6(3), 363-373. https://doi.org/10.1016/j.jare.2014.10.006

    Article  CAS  PubMed  Google Scholar 

  6. Y. Liu, J. Liu, R. Zhang, Y. Guo, H. Wang, Q. Meng, Y. Sun, and Z. Liu. Synthesis, characterization, and anticancer activities evaluation of compounds derived from 3,4-dihydropyrimidin-2(1H)-one. Molecules, 2019, 24(5), 891. https://doi.org/10.3390/molecules24050891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Y. El Bakri, M. Musrat Kurbanova, S. Ali Siddique, S. Ahmad, and S. Goumri-Said. One-pot synthesis, X-ray crystal structure, and identification of potential molecules against COVID-19 main protease through structure-guided modeling and simulation approach. Arabian J. Chem., 2022, 15(11), 104230. https://doi.org/10.1016/j.arabjc.2022.104230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. J. Rani, S. Kumar, M. Saini, J. Mundlia, and P. K. Verma. Biological potential of pyrimidine derivatives in a new era. Res. Chem. Intermed., 2016, 42(9), 6777-6804. https://doi.org/10.1007/s11164-016-2525-8

    Article  CAS  Google Scholar 

  9. B. Lagu, D. Tian, G. Chiu, D. Nagarathnam, J. Fang, Q. Shen, C. Forray, R. W. Ransom, R. S. L. Chang, K. P. Vyas, K. Zhang, and C. Gluchowski. Synthesis and evaluation of furo[3,4-d]pyrimidinones as selective 1a-adrenergic receptor antagonists. Bioorg. Med. Chem. Lett., 2000, 10(2), 175-178. https://doi.org/10.1016/s0960-894x(99)00653-8

    Article  CAS  Google Scholar 

  10. A. K. Sharma, S. Jayakumar, M. S. Hundal, and M. P. Mahajan. Tandem sigmatropic shifts in [4+2] cycloaddition reactions of 1,3-diazabuta-1,3-dienes with butadienylketene: synthesis of pyrimidinone derivatives. J. Chem. Soc., Perkin Trans. 1, 2002, (6), 774-784. https://doi.org/10.1039/b109922c

    Article  Google Scholar 

  11. Z. Zhang, M. B. Wallace, J. Feng, J. A. Stafford, R. J. Skene, L. Shi, B. Lee, K. Aertgeerts, A. Jennings, R. Xu, D. B. Kassel, S. W. Kaldor, M. Navre, D. R. Webb, and S. L. Gwaltney. Design and synthesis of pyrimidinone and pyrimidinedione inhibitors of dipeptidyl peptidase IV. J. Med. Chem., 2011, 54(2), 510-524. https://doi.org/10.1021/jm101016w

    Article  CAS  PubMed  Google Scholar 

  12. S. Sasaki, N. Cho, Y. Nara, M. Harada, S. Endo, N. Suzuki, S. Furuya, and M. Fujino. Discovery of a thieno[2,3-d]pyrimidine-2,4-dione bearing a p-methoxyureidophenyl moiety at the 6-position: A highly potent and orally bioavailable non-peptide antagonist for the human luteinizing hormone-releasing hormone receptor. J. Med. Chem., 2003, 46(1), 113-124. https://doi.org/10.1021/jm020180i

    Article  CAS  Google Scholar 

  13. S. Bartolini, A. Mai, M. Artico, N. Paesano, D. Rotili, C. Spadafora, and G. Sbardella. 6-[1-(2,6-difluorophenyl)ethyl]pyrimidinones antagonize cell proliferation and induce cell differentiation by inhibiting (a nontelomeric) endogenous reverse transcriptase. J. Med. Chem., 2005, 48(22), 6776-6778. https://doi.org/10.1021/jm0507330

    Article  CAS  PubMed  Google Scholar 

  14. R. Sharma, S. S. Jadav, S. Yasmin, S. Bhatia, H. Khalilullah, and M. J. Ahsan. Simple, efficient, and improved synthesis of Biginelli-type compounds of curcumin as anticancer agents. Med. Chem. Res., 2015, 24(2), 636-644. https://doi.org/10.1007/s00044-014-1146-2

    Article  CAS  Google Scholar 

  15. H. Wu, X. Chen, Y. Wan, L. Ye, H. Xin, H. Xu, L. Pang, R. Ma, and C. Yue. Synthesis, fluorescence properties and Zn2+ recognition of 4-Aryl-6-phenylpyrimidin-2(1H)-one. J. Chem. Res., 2008, 2008(12), 711-714. https://doi.org/10.3184/030823408x389958

    Article  Google Scholar 

  16. M. A. Spackman and D. Jayatilaka. Hirshfeld surface analysis. CrystEngComm, 2009, 11(1), 19-32. https://doi.org/10.1039/b818330a

    Article  CAS  Google Scholar 

  17. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, and M. A. Spackman. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr., 2021, 54(3), 1006-1011. https://doi.org/10.1107/s1600576721002910

    Article  CAS  Google Scholar 

  18. M. J. Turner, J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Visualisation and characterisation of voids in crystalline materials. CrystEngComm, 2011, 13(6), 1804-1813. https://doi.org/10.1039/c0ce00683a

    Article  CAS  Google Scholar 

  19. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  20. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  21. A. L. Spek. Structure validation in chemical crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, 65(2), 148-155. https://doi.org/10.1107/s090744490804362x

    Article  CAS  Google Scholar 

  22. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, and P. A. Wood. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr., 2020, 53(1), 226-235. https://doi.org/10.1107/s1600576719014092

    Article  CAS  Google Scholar 

  23. C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward. The Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2016, 72(2), 171-179. https://doi.org/10.1107/s2052520616003954

    Article  CAS  Google Scholar 

  24. H. R. Memarian, E. Sanchooli, H. A. Rudbari, and G. Bruno. Capto-dative stabilization by thermal oxidation of 2-oxo-1,2,3,4-tetrahydropyrimidines. Aust. J. Chem., 2016, 69(8), 872. https://doi.org/10.1071/ch16101

    Article  CAS  Google Scholar 

  25. P. Regenass, D. Abboud, F. Daubeuf, C. Lehalle, P. Gizzi, S. Riché, M. Hachet-Haas, F. Rohmer, V. Gasparik, D. Boeglin, J. Haiech, T. Knehans, D. Rognan, D. Heissler, C. Marsol, P. Villa, J.-L. Galzi, M. Hibert, N. Frossard, and D. Bonnet. Discovery of a locally and orally active CXCL12 neutraligand (LIT-927) with anti-inflammatory effect in a murine model of allergic airway hypereosinophilia. J. Med. Chem., 2018, 61(17), 7671-7686. https://doi.org/10.1021/acs.jmedchem.8b00657

    Article  CAS  PubMed  Google Scholar 

  26. J. Bernstein, R. E. Davis, L. Shimoni, and N.-L. Chang. Patterns in hydrogen bonding: Functionality and graph set analysis in crystals. Angew. Chem., Int. Ed. Eng., 1995, 34(15), 1555-1573. https://doi.org/10.1002/anie.199515551

    Article  CAS  Google Scholar 

  27. R. K. Askerov, M. Ashfaq, E. V. Chipinsky, V. K. Osmanov, M. N. Tahir, E. V. Baranov, G. K. Fukin, V. N. Khrustalev, R. H. Nazarov, G. N. Borisova, Z. V. Matsulevich, A. M. Maharramov, and A. V. Borisov. Synthesis, crystal structure, exploration of the supramolecular assembly through Hirshfeld surface analysis and bactericidal activity of the cadmium organometallic complexes obtained from the heterocyclic ligand. Results Chem., 2022, 4, 100600. https://doi.org/10.1016/j.rechem.2022.100600

    Article  CAS  Google Scholar 

  28. A. S. Faihan, N. M. Aziz, M. Ashfaq, W. M. I. Hassan, S. A. Al-Jibori, A. S. Al-Janabi, M. N. Tahir, and A. S. M. O. Al-Barwari. Synthesis, characterization, and X-ray crystallography of unexpected chloro-substitution on 1-(4-chlorophenyl)-3-phenylthiourea platinum(II) complex with tertiary phosphine ligand. J. Mol. Struct., 2022, 1270, 133985. https://doi.org/10.1016/j.molstruc.2022.133985

    Article  CAS  Google Scholar 

  29. M. Madni, M. N. Ahmed, G. Abbasi, S. Hameed, M. A. A. Ibrahim, M. N. Tahir, M. Ashfaq, D. M. Gil, R. M. Gomila, and A. Frontera. Synthesis and X-ray characterization of 4,5-dihydropyrazolyl-thiazoles bearing a coumarin moiety: on the importance of antiparallel -stacking. ChemistrySelect, 2022, 7(36). https://doi.org/10.1002/slct.202202287

    Article  Google Scholar 

  30. M. N. Ahmed, M. Madni, S. Anjum, S. Andleeb, S. Hameed, A. M. Khan, M. Ashfaq, M. N. Tahir, D. M. Gil, and A. Frontera. Crystal engineering with pyrazolyl-thiazole derivatives: structure-directing role of -stacking and σ-hole interactions. CrystEngComm, 2021, 23(18), 3276-3287. https://doi.org/10.1039/d1ce00256b

    Article  CAS  Google Scholar 

  31. J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun., 2007, (37), 3814. https://doi.org/10.1039/b704980c

    Article  Google Scholar 

  32. Y. El Bakri, C.-H. Lai, S. Karthikeyan, L. Guo, S. Ahmad, A. Ben-Yahya, J. T. Mague, and E. M. Essassi. Synthesis, crystal structure, Hirshfeld surface analysis and computational approach of new 2-methylbenzimidazo[1,2-a]pyrimidin-4(1H)-one. J. Mol. Struct., 2021, 1239, 130497. https://doi.org/10.1016/j.molstruc.2021.130497

    Article  CAS  Google Scholar 

  33. M. N. Ahmed, M. Ghias, S. W. A. Shah, M. Shoaib, M. N. Tahir, M. Ashfaq, M. A. A. Ibrahim, H. Andleeb, D. M. Gil, and A. Frontera. X-ray characterization, Hirshfeld surface analysis, DFT calculations, in vitro and in silico lipoxygenase inhibition (LOX) studies of dichlorophenyl substituted 3-hydroxy-chromenones. New J. Chem., 2021, 45(42), 19928-19940. https://doi.org/10.1039/d1nj04340d

    Article  CAS  Google Scholar 

  34. A. N. Malik, A. Kuznetsov, A. Ali, M. Ashfaq, M. N. Tahir, and A. Siddique. Imine-based zwitterion: Synthesis, single-crystal characterization, and computational investigation. J. Mol. Struct., 2022, 1253, 132237. https://doi.org/10.1016/j.molstruc.2021.132237

    Article  CAS  Google Scholar 

  35. M. Haroon, T. Akhtar, M. Yousuf, M. N. Tahir, L. Rasheed, S. S. Zahra, I. ul Haq, and M. Ashfaq. Synthesis, crystal structure, Hirshfeld surface investigation and comparative DFT studies of ethyl 2-[2-(2-nitrobenzylidene)hydrazinyl]thiazole-4-carboxylate. BMC Chem., 2022, 16(1), 18. https://doi.org/10.1186/s13065-022-00805-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. B. A. Khan, S. S. Hamdani, M. N. Ahmed, S. Hameed, M. Ashfaq, A. M. Shawky, M. A. A. Ibrahim, and P. A. Sidhom. Synthesis, X-ray diffraction analysis, quantum chemical studies and α-amylase inhibition of probenecid derived S-alkylphthalimide-oxadiazole-benzenesulfonamide hybrids. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1464-1478. https://doi.org/10.1080/14756366.2022.2078969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. C. Jelsch, K. Ejsmont, and L. Huder. The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ, 2014, 1(2), 119-128. https://doi.org/10.1107/s2052252514003327

    Article  CAS  Google Scholar 

  38. K. Shahzad Munawar, S. Ali, M. Ashfaq, M. Nawaz Tahir, S. Muhammad, S. S. Alarfaji, G. Ahmed, and A. G. Al-Sehemi. Synthesis, characterization, crystal structure and computational study of third-order NLO properties of Schiff bases. ChemistrySelect, 2022, 7(43). https://doi.org/10.1002/slct.202203015

    Article  Google Scholar 

  39. A. Ali, M. Ashfaq, Z. U. Din, M. Ibrahim, M. Khalid, M. A. Assiri, A. Riaz, M. N. Tahir, E. Rodrigues-Filho, M. Imran, and A. Kuznetsov. Synthesis, structural, and intriguing electronic properties of symmetrical bis-aryl-,-unsaturated ketone derivatives. ACS Omega, 2022, 7(43), 39294-39309. https://doi.org/10.1021/acsomega.2c05441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. K. S. Munawar, S. Ali, S. Muhammad, M. Ashfaq, S. M. Abbas, M. N. Tahir, S. M. Siddeeg, and G. Ahmed. Synthesis, crystal structure, Hirshfeld surface analysis, DNA binding, optical and nonlinear optical properties of Schiff bases derived from o-aminophenol. J. Mol. Struct., 2023, 1274, 134427. https://doi.org/10.1016/j.molstruc.2022.134427

    Article  CAS  Google Scholar 

  41. K. S. Ali, M. Ashfaq, M. N. Tahir, E. M. Movsumov, and K. S. Munawar. Synthesis, crystal structure, Hirshfeld surface and void analysis of bis(2-4-aminobenzoato-2O:O)bis[bis(4-aminobenzoato-2O:O)diaquathulium(III)]dihydrate. Acta Crystallogr., Sect. E: Crystallogr. Commun., 2022, 78(3), 282-286. https://doi.org/10.1107/s2056989022001116

    Article  CAS  Google Scholar 

  42. M. J. Turner, S. Grabowsky, D. Jayatilaka, and M. A. Spackman. Accurate and efficient model energies for exploring intermolecular interactions in molecular crystals. J. Phys. Chem. Lett., 2014, 5(24), 4249-4255. https://doi.org/10.1021/jz502271c

    Article  CAS  PubMed  Google Scholar 

  43. C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ, 2017, 4(5), 575-587. https://doi.org/10.1107/s205225251700848x

    Article  CAS  Google Scholar 

  44. M. Ashfaq, M. N. Tahir, S. Muhammad, K. S. Munawar, S. Ali, G. Ahmed, A. G. Al-Sehemi, S. S. Alarfaji, and M. E. Ibraheem Khan. Shedding light on the synthesis, crystal structure, characterization, and computational study of optoelectronic properties and bioactivity of imine derivatives. ACS Omega, 2022, 7(6), 5217-5230. https://doi.org/10.1021/acsomega.1c06325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. B. A. Khan, M. Ashfaq, S. Muhammad, K. S. Munawar, M. N. Tahir, A. G. Al-Sehemi, and S. S. Alarfaji. Exploring highly functionalized tetrahydropyridine as a dual inhibitor of monoamine oxidase A and B: Synthesis, structural analysis, single crystal XRD, supramolecular assembly exploration by Hirshfeld surface analysis, and computational studies. ACS Omega, 2022, 7(33), 29452-29464. https://doi.org/10.1021/acsomega.2c03909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ashfaq.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 3, 107647.https://doi.org/10.26902/JSC_id107647

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurbanova, M., Ashfaq, M., Tahir, M.N. et al. Synthesis, Crystal Structure, Supramolecular Assembly Inspection by Hirshfeld Surface Analysis and Computational Exploration of 4-Phenyl-6-(p-Tolyl)Pyrimidin-2 (1H)-One (PPTP). J Struct Chem 64, 437–449 (2023). https://doi.org/10.1134/S0022476623030095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623030095

Keywords

Navigation