Skip to main content
Log in

Growth Features and Phase Composition of Hf–Sc–O thin Films Synthesized by Atomic Layer Deposition

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The Hf–Sc–O films are synthesized by atomic layer deposition using hafnium tetrakis-diethylamide (Hf(N(C2H5)2)4, TDEAH), scandium tris-methylcyclopentadienyl (Sc(C5H4CH3)3), and water at 300 °C on (100) single crystal silicon wafers from SiOх oriented microrope arrays (OMRA). Samples are analyzed by a number of physicochemical techniques: single wave ellipsometry, X-ray photoelectron spectroscopy, X-ray diffraction, transmission and scanning electron microscopy. Growth per cycle values (a film thickness increase in one reaction step) for pure and mixed oxides are determined, phases formed in the films are characterized, the relationship between the surface morphology and the chemical composition is found, and the optical properties of the samples are investigated. The use of OMRA as wafers allows the reliable identification of the formation of an ordered δ-phase Hf3Sc4O12 of a rhombohedral structure type and space group \(R\bar{3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. J. H. Choi, Y. Mao, and J. P. Chang. Development of hafnium based high-k materials – A review. Mater. Sci. Eng., R, 2011, 72, 97-136. https://doi.org/10.1016/j.mser.2010.12.001

    Article  CAS  Google Scholar 

  2. W. Banerjee, A. Kashir, and S. Kamba. Hafnium oxide (HfO2) – a multifunctional oxide: A review on the prospect and challenges of hafnium oxide in resistive switching and ferroelectric memories. Small, 2022, 18, 2107575 https://doi.org/10.1002/smll.202107575

    Article  CAS  Google Scholar 

  3. T. P. Smirnova, L. V. Yakovkina, and V. O. Borisov. Impact of lanthanum on the modification of HfO2 films structure. J. Rare Earths, 2015, 33, 857-862. https://doi.org/10.1016/S1002-0721(14)60496-8

    Article  CAS  Google Scholar 

  4. P. Majumder, G. Jursich, and C. Takoudis. Structural phase transformation of Y2O3 doped HfO2 films grown on Si using atomic layer deposition. J. Appl. Phys., 2009, 105, 104106. https://doi.org/10.1063/1.3132830

    Article  CAS  Google Scholar 

  5. Q. Tao, G. Jursich, P. Majumder, M. Singh, W. Walkosz, P. Gu, R. Klie, and C. Takoudis. Composition–structure-dielectric property of yttrium-doped hafnium oxide films deposited by atomic layer deposition. Electrochem. Solid-State Lett., 2009, 12, G50. https://doi.org/10.1149/1.3156833

    Article  CAS  Google Scholar 

  6. C. Adelmann, H. Tielens, D. Dewulf, A. Hardy, D. Pierreux, J. Swerts, E. Rosseel, X. Shi, M. K. van Bael, J. A. Kittl, and S. van Elshocht. Atomic layer deposition of Gd-doped HfO2 thin films. J. Electrochem. Soc., 2010, 157, G105. https://doi.org/10.1149/1.3301663

    Article  CAS  Google Scholar 

  7. A. Hardy, C. Adelmann, S. van Elshocht, H. van den Rul, M. K. van Bael, S. de Gendt, M. DOlieslaeger, M. Heyns, J. A. Kittl, and J. Mullens. Study of interfacial reactions and phase stabilization of mixed Sc, Dy, Hf high-k oxides by attenuated total reflectance infrared spectroscopy. Appl. Surf. Sci., 2009, 255, 7812-7817. https://doi.org/10.1016/j.apsusc.2009.04.184

    Article  CAS  Google Scholar 

  8. C. Adelmann, P. Lehnen, S. van Elshocht, C. Zhao, B. Brijs, A. Franquet, T. Conard, M. Roeckerath, J. Schubert, O. Boissière, C. Lohe, and S. de Gendt. Growth of dysprosium-, scandium-, and hafnium-based third generation high- dielectrics by atomic vapor deposition. Chem. Vap. Deposition, 2007, 13, 567-573. https://doi.org/10.1002/cvde.200706604

    Article  CAS  Google Scholar 

  9. L. Xu, T. Nishimura, Sh. Shibayama, T. Yajima, Sh. Migita, and A. Toriumi. Kinetic pathway of the ferroelectric phase formation in doped HfO2 films. J. Appl. Phys. 2017, 122, 124104 https://doi.org/10.1063/1.5003918

    Article  CAS  Google Scholar 

  10. C. Adelmann, V. Sriramkumar, S. van Elshocht, P. Lehnen, T. Conard, and S. de Gendt. Dielectric properties of dysprosium- and scandium-doped hafnium dioxide thin films. Appl. Phys. Lett., 2007, 91, 162902. https://doi.org/10.1063/1.2798498

    Article  CAS  Google Scholar 

  11. T. P. Smirnova, L. V. Yakovkina, V. O. Borisov, V. N. Kichai, V. V. Kaichev, and V. V. Kriventsov. Structure of HfO2 films and binary oxides on its base. J. Struct. Chem. 2012, 53(4), 708-714. https://doi.org/10.1134/S0022476612040130

    Article  CAS  Google Scholar 

  12. L. V. Yakovkina, T. P. Smirnova, V. O. Borisov, V. N. Kichai, and V. V. Kaichev. Synthesis and properties of dielectric (HfO2)1–x(Sc2O3)x films. Inorg. Mater., 2013, 49(2). https://doi.org/10.1134/S0020168513020234

    Article  CAS  Google Scholar 

  13. V. V. Kaichev, E. V. Ivanova, M. V. Zamoryanskaya, T. P. Smirnova, L. V. Yakovkina, and V. A. Gritsenko. XPS and cathodoluminescence studies of HfO2, Sc2O3 and (HfO2)1–x(Sc2O3)x films. Eur. Phys. J. Appl. Phys., 2013, 64, 10302. https://doi.org/10.1051/epjap/2013130005

    Article  CAS  Google Scholar 

  14. J. Niinistö, K. Kukli, M. Heikkilä, M. Ritala, and M. Leskelä. Atomic layer deposition of high-k oxides of the group 4 metals for memory applications. Adv. Eng. Mater., 2009, 11, 223-234. https://doi.org/10.1002/adem.200800316

    Article  CAS  Google Scholar 

  15. R. W. Johnson, A. Hultqvist, and S. F. Bent. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today, 2014, 17(5), 236-246. https://doi.org/10.1016/j.mattod.2014.04.026

    Article  CAS  Google Scholar 

  16. J. A. Oke and T.-C. Jen. Atomic layer deposition and other thin film deposition techniques: From principles to film properties. J. Mater. Res. Technol., 2022, 21, 2481-2514. https://doi.org/10.1016/j.jmrt.2022.10.064

    Article  CAS  Google Scholar 

  17. T. P. Smirnova, A. A. Saraev, I. V. Korolkov, V. N. Kitchai, and V. O. Borisov. The crystal structure of solid solutions formed in the HfO2–Sc2O3 nanoscale system. J. Cryst. Growth, 2019, 523, 125156. https://doi.org/10.1016/j.jcrysgro.2019.125156

    Article  CAS  Google Scholar 

  18. G. A. Kalinovskaya, F. M. Spiridonov, and L. N. Komissarova. Phase equilibria in the HfO2–Sc2O3 system. J. Less-Сommon Met., 1969, 17(2), 151-159. https://doi.org/10.1016/0022-5088(69)90048-4

    Article  CAS  Google Scholar 

  19. R. Blom, A. Hammel, A. Haaland, J. Weidlein, T. V. Timofeeva, and Y. T. Struchkov. Molecular structures of tris(methylcyclopentadienyl)-scandium and -ytterbium as studied by gas phase electron diffraction and molecular mechanics calculations: the scandium atom is too small to accommodate three pentahapto cyclopentadienyl rings. J. Organomet. Chem., 1993, 462(1/2), 131-139. https://doi.org/10.1016/0022-328x(93)83350-5

    Article  CAS  Google Scholar 

  20. S. Ya. Khmel, E. A. Baranov, A. V. Zaikovskii, A. O. Zamchiy, E. A. Maximovskiy, D. V. Gulyaev, and K. S. Zhuravlev. Synthesis of silicon oxide nanowires by the GJ EBP CVD method using different diluent gases. Phys. Status Solidi A, 2016, 213, 1774-1782. https://doi.org/10.1002/pssa.201532955

    Article  CAS  Google Scholar 

  21. A. O. Zamchiy, E. A. Baranov, and S. Ya. Khmel. Tin-catalyzed oriented array of microropes of silicon oxide nanowires synthesized on different substrates. Vacuum, 2018, 147, 99-106. https://doi.org/10.1016/j.vacuum.2017.10.028

    Article  CAS  Google Scholar 

  22. M. S. Lebedev, S. Ya. Khmel, M. N. Lyulyukin, D. E. Petukhova, and A. V. Barsukov. Low-temperature fabrication of SiOx–TiO2 core-shell nanowires for photocatalytic application. Vacuum, 2019, 165, 51-57. https://doi.org/10.1016/j.vacuum.2019.03.059

    Article  CAS  Google Scholar 

  23. D. A. Holmes. On the calculation of thin film refractive index and thickness by ellipsometry. Appl. Opt., 1967, 6(1), 168/169. https://doi.org/10.1364/AO.6.000168

    Article  CAS  PubMed  Google Scholar 

  24. Powder Diffraction File, release 2022. Newtown, Pennsylvania, USA: International Centre for Diffraction Data, 2022.

  25. M. Coll and M. Napari. Atomic layer deposition of functional multicomponent oxides. APL Mater., 2019, 7, 110901. https://doi.org/10.1063/1.5113656

    Article  CAS  Google Scholar 

  26. X. Shi, H. Tielens, S. Takeoka, T. Nakabayashi, L. Nyns, Ch. Adelmann, A. Delabie, T. Schram, L. Ragnarsson, M. Schaekers, L. Date, R. Schreutelkamp, and S. V. Elshocht. Development of ALD HfZrOx with TDEAH/TDEAZ and H2O. J. Electrochem. Soc., 2011, 158, H69. https://doi.org/10.1149/1.3516476

    Article  CAS  Google Scholar 

  27. D. M. Hausmann, E. Kim, J. Becker, and R. G. Gordon. Atomic layer deposition of hafnium and zirconium oxides using metal amide precursors. Chem. Mater., 2002, 14(10), 4350-4358. https://doi.org/10.1021/cm020357x

    Article  CAS  Google Scholar 

  28. M. S. Lebedev, V. N. Kruchinin, M. Yu. Afonin, I. V. Korolkov, A. A. Saraev, A. A. Gismatulin, and V. A. Gritsenko. Optical properties and charge transport of textured Sc2O3 thin films obtained by atomic layer deposition. Appl. Surf. Sci., 2019, 478, 690-698. https://doi.org/10.1016/j.apsusc.2019.01.288

    Article  CAS  Google Scholar 

  29. A. J. M. Mackus, J. R. Schneider, C. MacIsaac, J. G. Baker, and S. F. Bent. Synthesis of doped, ternary, and quaternary materials by atomic layer deposition: A review. Chem. Mater., 2019, 31, 1142-1183. https://doi.org/10.1021/acs.chemmater.8b02878

    Article  CAS  Google Scholar 

  30. V. V. Atuchin, M. S. Lebedev, I. V. Korolkov, V. N. Kruchinin, E. A. Maksimovskii, and S. V. Trubin. Composition-sensitive growth kinetics and dispersive optical properties of thin HfxTi1–xO2 (0  x  1) films prepared by the ALD method. Mater. Electron., 2019, 30, 812-823. https://doi.org/10.1007/s10854-018-0351-z

    Article  CAS  Google Scholar 

  31. R. L. Puurunen. Growth per cycle in atomic layer deposition: A theoretical model. Chem. Vap. Deposition, 2003, 9, 249-257. https://doi.org/10.1002/cvde.200306265

    Article  CAS  Google Scholar 

  32. S. Bosch, J. Ferre-Borrull, N. Leinfellner, and A. Canillas. Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations. Surf. Sci., 2000, 453, 9-17. https://doi.org/10.1016/S0039-6028(00)00354-X

    Article  CAS  Google Scholar 

  33. M. S. Lebedev, V. N. Kruchinin, M. I. Lebedeva, and E. V. Spesivtsev. Compositionally tunable optical properties of hafnium titanium oxide deposited by atomic layer deposition without intermediate surface hydroxylation. Thin Solid Films, 2017, 642, 103-109. https://doi.org/10.1016/j.tsf.2017.09.014

    Article  CAS  Google Scholar 

  34. V. Cremers, R. Puurunen, and J. Dendooven. Conformality in atomic layer deposition: Current status overview of analysis and modelling. Appl. Phys. Rev., 2019, 6, 021302. https://doi.org/10.1063/1.5060967

    Article  CAS  Google Scholar 

  35. B. L. Greenberg, K. P. Anderson, M. A. Wolak, A. G. Jacobs, J. A. Wollmershauser, and B. N. Feigelson. Temperature excursions due to the reaction heat produced by atomic layer deposition on nanostructured substrates. Chem. Mater., 2020, 32, 10155-10164. https://doi.org/10.1021/acs.chemmater.0c03644

    Article  CAS  Google Scholar 

  36. R. Katamreddy, R. Inman, G. Jursich, A. Soulet, and C. Takoudis. Effect of film composition and structure on the crystallization point of atomic layer deposited HfAlOx using metal (diethylamino) precursors and ozone. Acta Mater., 2008, 56, 710-718. https://doi.org/10.1016/j.actamat.2007.10.017

    Article  CAS  Google Scholar 

  37. J. Niinistö, M. Putkonen, L. Niinistö, F. Song, P. Williams, P. N. Heys, and R. Odedra. Atomic layer deposition of HfO2 thin films exploiting novel cyclopentadienyl precursors at high temperatures. Chem. Mater., 2007, 19, 3319-3324. https://doi.org/10.1021/cm0626583

    Article  CAS  Google Scholar 

  38. J. Baek, W. Choi, H. Kim, S. Cheon, Y. Byun, W. Jeon, and J.-S. Park. Plasma-enhanced atomic layer deposited HfO2 films using a novel heteroleptic cyclopentadienyl based Hf precursor, Ceram. Int., 2021, 47, 29030-29035. https://doi.org/10.1016/j.ceramint.2021.07.065

    Article  CAS  Google Scholar 

  39. J. Gope, Vandana, N. Batra, J. Panigrahi, R. Singh, K. K. Maurya, R. Srivastava, and P. K. Singh. Silicon surface passivation using thin HfO2 films by atomic layer deposition. Appl. Surf. Sci., 2015, 357, 635-642. https://doi.org/10.1016/j.apsusc.2015.09.020

    Article  CAS  Google Scholar 

  40. U. Schroeder, E. Yurchuk, J. Müller, D. Martin, T. Schenk, P. Polakowski, C. Adelmann, M. I. Popovici, S. V. Kalinin, and T. Mikolajick. Impact of different dopants on the switching properties of ferroelectric hafnium oxide. Jpn. J. Appl. Phys., 2014, 53, 08LE02. https://doi.org/10.7567/JJAP.53.08LE02

    Article  CAS  Google Scholar 

  41. A. V. Shlyakhtina, D. A. Belov, S. Yu. Stefanovich, I. V. Kolbanev, O. K. Karyagina, A. V. Egorov, S. V. Savilov, and L. G. Shcherbakova. -Phase-to-defect fluorite (order-disorder) transition in the R2O3–MO2 (R = Sc, Tm, Lu; M = Zr, Hf) systems, Mater. Res. Bull., 2011, 46, 512-517. https://doi.org/10.1016/j.materresbull.2011.01.001

    Article  CAS  Google Scholar 

  42. J. Wen, Y. H. Li, M. Tang, J. A. Valdez, Y. Q. Wang, M. K. Patel, and K. E. Sickafus. Heavy and light ion irradiation damage effects in -phase Sc4Hf3O12. Nucl. Instrum. Methods Phys. Res., Sect. B, 2015, 365, 325-330. https://doi.org/10.1016/j.nimb.2015.04.011

    Article  CAS  Google Scholar 

  43. M. K. Patel, K. E. Sickafus, and G. Baldinozzi. Divergent short- and long-range behavior in ion-irradiated -Sc4Hf3O12. Phys. Rev. Mater., 2020, 4, 093605. https://doi.org/10.1103/PhysRevMaterials.4.093605

    Article  CAS  Google Scholar 

  44. M. Iwasaki, Y. Kanazawa, D. Manago, M. K. Patel, G. Baldinozzi, K. E. Sickafus, and M. Ishimaru. Anomalous structural phase transformation in swift heavy ion-irradiated -Sc3Hf4O12. J. Appl. Phys., 2022, 132, 075901. https://doi.org/10.1063/5.0098518

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation within projects Nos. 121031700313-8 (XRD), 121031800218-5 (synthesis and characterization of arrays of microropes consisting of nanowires), and 121031700314-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Petukhova.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 3, 107605.https://doi.org/10.26902/JSC_id107605

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petukhova, D.E., Vikulova, E.S., Korolkov, I.V. et al. Growth Features and Phase Composition of Hf–Sc–O thin Films Synthesized by Atomic Layer Deposition. J Struct Chem 64, 424–436 (2023). https://doi.org/10.1134/S0022476623030083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623030083

Keywords

Navigation