Skip to main content
Log in

Crystal Structure and Low-Temperature Structural Phase Transition of the Iron(III) Oxopropionate Nitrate [Fe3O(H2O)3Prop6](NO3)·(HNO3)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A compound [Fe3O(H2O)3Prop6](NO3)·(HNO3) (1; Prop is the C2H5COO propionate) is prepared by the interaction of metallic iron and Fe(NO3)3 with concentrated propionic acid; the crystal structure of this compound is determined by single-crystal XRD at 100 K, 200 K, and 300 K. The experimental data show that the structure of 1 is a packing of complex cations [Fe3O(H2O)3Prop6]+ and nitrate anions with nitric acid molecules in packing voids. It is shown for the first time by polythermal XRD that 1 undergoes a structural phase transition manifested as partial ordering of aliphatic substituents in anionic ligands, changes in the configuration of NO2–OH⋯O–NO2 hydrogen bonds, and lowering of crystallographic symmetry of [Fe3O(H2O)3Prop6]+ complex cations. Thermal expansion of the crystal structure of 1 is studied in the temperature range 100-300 K; the experimental data show that the unit cell parameter b changes nonmonotonically upon heating and exhibits pronounced regions of positive and negative thermal expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. S. V. Eliseeva and J.-C. G. Bünzli. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev., 2010, 39(1), 189-227. https://doi.org/10.1039/b905604c

    Article  CAS  PubMed  Google Scholar 

  2. J. Heine and K. Müller-Buschbaum. Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. Chem. Soc. Rev., 2013, 42(24), 9232. https://doi.org/10.1039/c3cs60232j

    Article  CAS  PubMed  Google Scholar 

  3. A. F. Henwood and E. Zysman-Colman. A Comprehensive Review of Luminescent Iridium Complexes Used in Light-Emitting Electrochemical Cells (LEECs). In: Iridium(III) in Optoelectronic and Photonics Applications / Ed. E. Zysman-Colman. Chichester, UK: John Wiley & Sons, 2017, 275-357. https://doi.org/10.1002/9781119007166.ch7

    Chapter  Google Scholar 

  4. H. Na and T. S. Teets. Highly luminescent cyclometalated iridium complexes generated by nucleophilic addition to coordinated isocyanides. J. Am. Chem. Soc., 2018, 140(20), 6353-6360. https://doi.org/10.1021/jacs.8b02416

    Article  CAS  PubMed  Google Scholar 

  5. H.-L. Sun, Z.-M. Wang, and S. Gao. Strategies towards single-chain magnets. Coord. Chem. Rev., 2010, 254(9/10), 1081-1100. https://doi.org/10.1016/j.ccr.2010.02.010

    Article  CAS  Google Scholar 

  6. A. Bousseksou, G. Molnár, L. Salmon, and W. Nicolazzi. Molecular spin crossover phenomenon: Recent achievements and prospects. Chem. Soc. Rev., 2011, 40(6), 3313. https://doi.org/10.1039/c1cs15042a

    Article  CAS  PubMed  Google Scholar 

  7. R. Sessoli and A. K. Powell. Strategies towards single molecule magnets based on lanthanide ions. Coord. Chem. Rev., 2009, 253(19/20), 2328-2341. https://doi.org/10.1016/j.ccr.2008.12.014

    Article  CAS  Google Scholar 

  8. J. Malinowski, D. Zych, D. Jacewicz, B. Gawdzik, and J. Drzeżdżon. Application of coordination compounds with transition metal ions in the chemical industry – A review. Int. J. Mol. Sci., 2020, 21(15), 5443. https://doi.org/10.3390/ijms21155443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Q. Wang and D. Astruc. State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev., 2020, 120(2), 1438-1511. https://doi.org/10.1021/acs.chemrev.9b00223

    Article  CAS  PubMed  Google Scholar 

  10. A. Dhakshinamoorthy, Z. Li, and H. Garcia. Catalysis and photocatalysis by metal organic frameworks. Chem. Soc. Rev., 2018, 47(22), 8134-8172. https://doi.org/10.1039/c8cs00256h

    Article  CAS  PubMed  Google Scholar 

  11. Chemical Solution Deposition of Functional Oxide Thin Films / Eds. T. Schneller, R. Waser, M. Kosec, and D. Payne. Vienna, Austria: Springer Vienna, 2013. https://doi.org/10.1007/978-3-211-99311-8

    Book  Google Scholar 

  12. S. Mishra and S. Daniele. Metal-organic derivatives with fluorinated ligands as precursors for inorganic nanomaterials. Chem. Rev., 2015, 115(16), 8379-8448. https://doi.org/10.1021/cr400637c

    Article  CAS  PubMed  Google Scholar 

  13. R. W. Schwartz. Chemical solution deposition of perovskite thin films. Chem. Mater., 1997, 9(11), 2325-2340. https://doi.org/10.1021/cm970286f

    Article  CAS  Google Scholar 

  14. X. Chen, D. Peng, Q. Ju, and F. Wang. Photon upconversion in core-shell nanoparticles. Chem. Soc. Rev., 2015, 44(6), 1318-1330. https://doi.org/10.1039/c4cs00151f

    Article  CAS  PubMed  Google Scholar 

  15. R. Janicki, A. Mondry, and P. Starynowicz. Carboxylates of rare earth elements. Coord. Chem. Rev., 2017, 340, 98-133. https://doi.org/10.1016/j.ccr.2016.12.001

    Article  CAS  Google Scholar 

  16. A. Ouchi, Y. Suzuki, Y. Ohki, and Y. Koizumi. Structure of rare earth carboxylates in dimeric and polymeric forms. Coord. Chem. Rev., 1988, 92, 29-43. https://doi.org/10.1016/0010-8545(88)85004-5

    Article  CAS  Google Scholar 

  17. A. Tulinsky and C. R. Worthington. Basic beryllium acetate. II. The structure analysis. Acta Crystallogr., 1959, 12(9), 626-634. https://doi.org/10.1107/s0365110x59001864

    Article  CAS  Google Scholar 

  18. L. Hiltunen, M. Leskelä, M. Mäkelä, and L. Niinistö. Crystal structure of mu4-oxo-hexakis(mu-acetato)tetrazinc and thermal studies of its precursor, zinc acetate dihydrate. Acta Chem. Scand., 1987, 41a, 548-555. https://doi.org/10.3891/acta.chem.scand.41a-0548

    Article  Google Scholar 

  19. F. A. Cotton, C. E. Rice, and G. W. Rice. Crystal and molecular structure of anhydrous tetraacetatodichromium. J. Am. Chem. Soc., 1977, 99(14), 4704-4707. https://doi.org/10.1021/ja00456a029

    Article  CAS  Google Scholar 

  20. A. V. A. Lobatón. P. D. F. Torres, T. G. P. Galindo, and G. G. García. CCDC 1535284: Experimental Crystal Structure Determination. The Cambridge Crystallographic Data Centre, 2017. https://doi.org/10.5517/ccdc.csd.cc1njl92

  21. G. M. Brown and R. Chidambaram. Dinuclear copper(II) acetate monohydrate: A redetermination of the structure by neutron-diffraction analysis. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1973, 29(11), 2393-2403. https://doi.org/10.1107/s0567740873006758

    Article  CAS  Google Scholar 

  22. J. N. van Niekerk and F. R. L. Schoening. A new type of copper complex as found in the crystal structure of cupric acetate, Cu2(CH3COO)4·2H2O. Acta Crystallogr., 1953, 6(3), 227-232. https://doi.org/10.1107/s0365110x53000715

    Article  CAS  Google Scholar 

  23. L. Pietro Battaglia, A. B. Corradi, and L. Menabue. Structure-magnetism correlation in dimeric copper(II) carboxylates: crystal and molecular structure of tetra-μ-(propanoato-O,O′)-bis[aquacopper(II)]. J. Chem. Soc., Dalton Trans., 1986, (8), 1653-1657. https://doi.org/10.1039/dt9860001653

    Article  Google Scholar 

  24. M. Perec, R. Baggio, R. P. Sartoris, R. C. Santana, O. Peña, and R. Calvo. Magnetism and structure in chains of copper dinuclear paddlewheel units. Inorg. Chem., 2010, 49(2), 695-703. https://doi.org/10.1021/ic902005m

    Article  CAS  Google Scholar 

  25. M. Kendin, A. Nikiforov, R. Svetogorov, P. Degtyarenko, and D. Tsymbarenko. A 3D-coordination polymer assembled from copper propionate paddlewheels and potassium propionate 1D-polymeric rods possessing a temperature-driven single-crystal-to-single-crystal phase transition. Cryst. Growth Des., 2021, 21(11), 6183-6194. https://doi.org/10.1021/acs.cgd.1c00637

    Article  CAS  Google Scholar 

  26. S. A. Nikolaevskii, M. A. Kiskin, A. A. Starikova, N. N. Efimov, A. A. Sidorov, V. M. Novotortsev, and I. L. Eremenko. Binuclear nickel(II) complexes with 3,5-di-tert-butylbenzoate and 3,5-di-tert-butyl-4-hydroxybenzoate anions and 2,3-lutidine: The synthesis, structure, and magnetic properties. Russ. Chem. Bull., 2016, 65(12), 2812-2819. https://doi.org/10.1007/s11172-016-1661-z

    Article  CAS  Google Scholar 

  27. F. A. Cotton, Z. C. Mester, and T. R. Webb. Dimolybdenum tetraacetate. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1974, 30(11), 2768-2770. https://doi.org/10.1107/s0567740874008053

    Article  Google Scholar 

  28. F. A. Cotton, B. G. DeBoer, M. D. LaPrade, J. R. Pipal, and D. A. Ucko. The crystal and molecular structures of dichromium tetraacetate dihydrate and dirhodium tetraacetate dihydrate. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1971, 27(8), 1664-1671. https://doi.org/10.1107/s0567740871004527

    Article  CAS  Google Scholar 

  29. M. Yazdanbakhsh, H. Tavakkoli, M. Taherzadeh, and R. Boese. Synthesis, X-ray crystal structure and spectroscopic characterization of heterotrinuclear oxo-centered complex [Fe2NiO(CH3CH2COO)6(H2O)3]. J. Mol. Struct., 2010, 982(1-3), 176-180. https://doi.org/10.1016/j.molstruc.2010.08.029

    Article  CAS  Google Scholar 

  30. M. Abe, M. Tanaka, K. Umakoshi, and Y. Sasaki. Enhanced kinetic lability of Ru(III) centers in oxo-centered mixed-metal Ru2M trinuclear complexes (M = Zn and Mg). Inorg. Chem., 1999, 38(18), 4146-4148. https://doi.org/10.1021/ic990047p

    Article  CAS  Google Scholar 

  31. G. Losada, M. A. Mendiola, and M. T. Sevilla. Synthesis, characterization and electrochemical properties of trinuclear iron(III) complexes containing unsaturated carboxylate bridging ligands. Inorg. Chim. Acta, 1997, 255(1), 125-131. https://doi.org/10.1016/s0020-1693(96)05366-2

    Article  CAS  Google Scholar 

  32. C. T. Dziobkowski, J. T. Wrobleski, and D. B. Brown. Magnetic and spectroscopic properties of , L = water or pyridine. Direct observation of the thermal barrier to electron transfer in a mixed-valance complex. Inorg. Chem., 1981, 20(3), 679-684. https://doi.org/10.1021/ic50217a008

    Article  CAS  Google Scholar 

  33. W. Bury, E. Chwojnowska, I. Justyniak, J. Lewiński, A. Affek, E. Zygadło-Monikowska, J. Bąk, and Z. Florjańczyk. Investigations on the interaction of dichloroaluminum carboxylates with Lewis bases and water: an efficient road toward oxo- and hydroxoaluminum carboxylate complexes. Inorg. Chem., 2012, 51(1), 737-745. https://doi.org/10.1021/ic2023924

    Article  CAS  PubMed  Google Scholar 

  34. H. Hatop, M. Ferbinteanu, H. W. Roesky, F. Cimpoesu, M. Schiefer, H.-G. Schmidt, and M. Noltemeyer. Lightest member of the basic carboxylate structural pattern: [Al3(μ3-O)(μ-O2CCF3)6(THF)3][(Me3Si)3Cal(O2CCF3)3]C7H8. Inorg. Chem., 2002, 41(4), 1022-1025. https://doi.org/10.1021/ic010880y

    Article  CAS  PubMed  Google Scholar 

  35. P. Lemoine, A. Bekaert, J. D. Brion, and B. Viossat. Crystal structure of hexakis(μ2-acetato)-tris(acetonitrile-κN)-μ3-oxotrialuminum(III) tetrachloroaluminate, [Al3(C2H3O2)6(C2H3N)3O][AlCl4]. Z. Kristallogr. – New Cryst. Struct., 2006, 221(3), 309/310. https://doi.org/10.1524/ncrs.2006.0087

    Article  CAS  Google Scholar 

  36. S. C. Chang and G. A. Jeffrey. The crystal structure of a basic chromium acetate compound, [OCr3(CH3COO)63H2O]+Cl−·6H2O, having feeble paramagnetism. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1970, 26(6), 673-683. https://doi.org/10.1107/s056774087000300x

    Article  CAS  Google Scholar 

  37. B. N. Figgis and G. B. Robertson. Crystal-molecular structure and magnetic properties of Cr3(CH3COO)6OCl5H2O. Nature, 1965, 205(4972), 694/695. https://doi.org/10.1038/205694a0

    Article  CAS  Google Scholar 

  38. J. Li, S. Yang, F. Zhang, Z. Tang, S. Ma, Q. Shi, Q. Wu, and Z. Huang. Synthesis, structure and magnetic properties of oxo-centered trinuclear manganese complex [Mn3O(O2CC3H7)6(C5H5N)3]ClO4. Inorg. Chim. Acta, 1999, 294(1), 109-113. https://doi.org/10.1016/s0020-1693(99)00278-9

    Article  CAS  Google Scholar 

  39. F. Degang, W. Guoxiong, T. Wenxia, and Y. Kaibei. The structure and magnetic properties of μ3-oxotriiron(III) complex [Fe3O(OBZ)6(CH3OH)3](NO3)(CH3OH)2 (HOBZ = benzoic acid). Polyhedron, 1993, 12(20), 2459-2463. https://doi.org/10.1016/s0277-5387(00)83070-3

    Article  Google Scholar 

  40. K. Anzenhofer and J. J. de Boer. The crystal structure of the basic iron acetate (Short communication). Recl. Trav. Chim. Pays-Bas, 2010, 88(3), 286-288. https://doi.org/10.1002/recl.19690880305

    Article  Google Scholar 

  41. R. V. Thundathil, E. M. Holt, S. L. Holt, and K. J. Watson. Preparation and properties of iron(III)-amino acid complexes. 2. The crystal and molecular structure of monoclinic tri-.mu.3-oxo-triaquohexakis(glycine)triiron(III) perchlorate. J. Am. Chem. Soc., 1977, 99(6), 1818-1823. https://doi.org/10.1021/ja00448a024

    Article  CAS  PubMed  Google Scholar 

  42. A. B. Blake and L. R. Fraser. Crystal structure and mass spectrum of μ3-oxo-hexakis(μ-trimethyl-acetato)-trismethanoltri-iron(III) chloride, a trinuclear basic iron(III) carboxylate. J. Chem. Soc., Dalton Trans., 1975, (3), 193-197. https://doi.org/10.1039/dt9750000193

    Article  Google Scholar 

  43. A. B. Blake, A. Yavari, W. E. Hatfield, and C. N. Sethulekshmi. Magnetic and spectroscopic properties of some heterotrinuclear basic acetates of chromium(III), iron(III), and divalent metal ions. J. Chem. Soc., Dalton Trans., 1985, (12), 2509. https://doi.org/10.1039/dt9850002509

    Article  Google Scholar 

  44. A. Earnshaw, B. N. Figgis, and J. Lewis. Chemistry of polynuclear compounds. Part VI. Magnetic properties of trimeric chromium and iron carboxylates. J. Chem. Soc. A, 1966, 1656. https://doi.org/10.1039/j19660001656

    Article  Google Scholar 

  45. J. F. Duncan, C. R. Kanekar, and K. F. Mok. Some trinuclear iron(III) carboxylate complexes. J. Chem. Soc. A, 1969, 480. https://doi.org/10.1039/j19690000480

    Article  Google Scholar 

  46. A. N. Georgopoulou, Y. Sanakis, V. Psycharis, C. P. Raptopoulou, and A. K. Boudalis. Mössbauer spectra of two extended series of basic iron(III) carboxylates [Fe3O(O2CR)6(H2O)6]A . Hyperfine Interact., 2010, 198(1-3), 229-241. https://doi.org/10.1007/s10751-010-0179-2

    Article  CAS  Google Scholar 

  47. J. Fábry and M. Dušek. Low-temperature phases of dicalcium barium hexakis(propanoate). Acta Crystallogr., Sect. C: Struct. Chem., 2021, 77(11), 683-690. https://doi.org/10.1107/s205322962101024x

    Article  CAS  Google Scholar 

  48. M. Machida and T. Yagi. Crystal structure of deuterated dicalcium strontium propionate, Ca2Sr(C2D5CO2)6 in the paraelectric and ferroelectric phases. J. Phys. Soc. Jpn., 1988, 57(4), 1291-1302. https://doi.org/10.1143/jpsj.57.1291

    Article  CAS  Google Scholar 

  49. N. Mishima. Structural study of the ferroelectric phase transition in Ca2Sr(C2H5CO2)6. J. Phys. Soc. Japan, 1984, 53(3), 1062-1070. https://doi.org/10.1143/jpsj.53.1062

    Article  CAS  Google Scholar 

  50. D. Tsymbarenko, D. Grebenyuk, M. Burlakova, and M. Zobel. Quick and robust PDF data acquisition using a laboratory single-crystal X-ray diffractometer for study of polynuclear lanthanide complexes in solid form and in solution. J. Appl. Crystallogr., 2022, 55(4), 890-900. https://doi.org/10.1107/s1600576722005878

    Article  CAS  Google Scholar 

  51. G. M. Sheldrick. SHELXTL, Ver. 5.10. Madison, Wisconsin, USA: Bruker AXS, Inc., 1998.

  52. G. M. Sheldrick. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64(1), 112-122. https://doi.org/10.1107/s0108767307043930

    Article  Google Scholar 

  53. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  54. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr., 2015, 48(1), 3-10. https://doi.org/10.1107/s1600576714022985

    Article  CAS  Google Scholar 

  55. M. K. Johnson, D. B. Powell, and R. D. Cannon. Vibrational spectra of carboxylato complexes – III. Trinuclear ′basic′ acetates and formates of chromium(III), iron(III) and other transition metals. Spectrochim. Acta, Part A, 1981, 37(11), 995-1006. https://doi.org/10.1016/0584-8539(81)80029-3

    Article  Google Scholar 

  56. E. M. Holt, S. L. Holt, W. F. Tucker, R. O. Asplund, and K. J. Watson. Preparation and properties of iron(III)-amino acid complexes. Iron(III)-alanine, a possible ferritin analog. J. Am. Chem. Soc., 1974, 96(8), 2621-2623. https://doi.org/10.1021/ja00815a055

    Article  CAS  PubMed  Google Scholar 

  57. A. Laurikėnas, J. Barkauskas, J. Reklaitis, G. Niaura, D. Baltrūnas, and A. Kareiva. Formation peculiarities of iron(III) acetate: potential precursor for iron metal-organic frameworks (MOFs). Lith. J. Phys., 2016, 56(1). https://doi.org/10.3952/physics.v56i1.3274

    Article  Google Scholar 

  58. M. Kendin and D. Tsymbarenko. 2D-coordination polymers based on rare-earth propionates of layered topology demonstrate polytypism and controllable single-crystal-to-single-crystal phase transitions. Cryst. Growth Des., 2020, 20(5), 3316-3324. https://doi.org/10.1021/acs.cgd.0c00110

    Article  CAS  Google Scholar 

Download references

Funding

This work has received funding from Russian Science Foundation (Project No 22-13-00122). Authors acknowledge support from the M. V. Lomonosov Moscow State University Program of Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Tsymbarenko.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 3, 107594.https://doi.org/10.26902/JSC_id107594

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kendin, M.P., Lyssenko, K.A. & Tsymbarenko, D.M. Crystal Structure and Low-Temperature Structural Phase Transition of the Iron(III) Oxopropionate Nitrate [Fe3O(H2O)3Prop6](NO3)·(HNO3). J Struct Chem 64, 410–423 (2023). https://doi.org/10.1134/S0022476623030071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623030071

Keywords

Navigation