Skip to main content
Log in

Synthesis and Structures of Mono- and Trinuclear Complexes of Palladium(II) with 2-Chloropyridine

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

New complex compounds[(2-clpy)2Pd(OOCMe)2] (I), [{(Ph)Pd(2-clpy)}2(OOCMe)4Pd]·3C6H6 (II), and [{(Ph)Pd(2-clpy)}2(OOCMe)4Pd] (III) are obtained in the interaction of palladium acetate [Pd3(OOCMe)6] with 2-chloropyridine (2-clpy) and structurally characterized by single crystal X-ray diffraction. It is found that in the inert medium, mononuclear compound I forms and it can be isolated in the crystalline state, while trinuclear complexes II and III are the products of benzene metalation with palladium under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. X.-F. Wu, P. Anbarasan, H. Neumann, and M. Beller. From noble metal to Nobel Prize: palladium-catalyzed coupling reactions as key methods in organic synthesis. Angew. Chem., Int. Ed., 2010, 49, 9047-9050. https://doi.org/10.1002/anie.201006374

    Article  CAS  PubMed  Google Scholar 

  2. L. S. Hegedus, G. F. Allen, and D. J. Olsen. Palladium-assisted cyclization-insertion reactions. Synthesis of functionalized heterocycles. J. Am. Chem. Soc., 1980, 102, 3583-3587. https://doi.org/10.1021/ja00530a044

    Article  CAS  Google Scholar 

  3. N. Kaur, Y. Verma, P. Grewal, N. Ahlawat, P. Bhardwaj, and N. K. Jangid. Palladium acetate assisted synthesis of five-membered N-polyheterocycles. Synth. Commun., 2020, 50, 1567-1621. https://doi.org/10.1080/00397911.2020.1723640

    Article  CAS  Google Scholar 

  4. R. F. Heck and J. P. Nolley Jr. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem., 1972, 37, 2320-2322. https://doi.org/10.1021/jo00979a024

    Article  CAS  Google Scholar 

  5. K. S. M. Salih and Y. Baqi. Microwave-assisted palladium-catalyzed cross-coupling reactions: generation of carbon-carbon bond. Catalysts, 2020, 10, 4. https://doi.org/10.3390/catal10010004

    Article  CAS  Google Scholar 

  6. P.-E. Broutin, I. Čerňa, M. Campaniello, F. Leroux, and F. Colobert. Palladium-catalyzed borylation of phenyl bromides and application in one-pot Suzuki–Miyaura biphenyl synthesis. Org. Lett., 2004, 6, 4419-4422. https://doi.org/10.1021/ol048303b.

    Article  CAS  PubMed  Google Scholar 

  7. W. A. Carole and T. J. Colacot. Understanding palladium acetate from a user perspective. Chem. Eur. J., 2016, 22, 7686-7695. https://doi.org/10.1002/chem.201601450

    Article  CAS  PubMed  Google Scholar 

  8. S. M. Ghodse and V. N. Telvekar. Synthesis of 2-phenyl pyridine derivatives from aryl ketones and 1,3-diaminopropane using palladium acetate as a catalyst. Tetrahedron Lett., 2017, 58, 524-526. https://doi.org/10.1016/j.tetlet.2016.12.075

    Article  CAS  Google Scholar 

  9. R. J. Pakula, M. Srebro-Hooper, C. G. Fry, H. J. Reich, J. Autschbach, and J. F. Berry. Palladium acetate revisited: Unusual ring-current effects, one-electron reduction, and metal–metal bonding. Inorg. Chem., 2018, 57, 8046-8049. https://doi.org/10.1021/acs.inorgchem.8b01369

    Article  CAS  PubMed  Google Scholar 

  10. S. B. Halligudi, K. N. Bhatt, N. H. Khan, R. I. Kurashy, and K. Venkatsubramanian. Synthesis, structural characterization and catalytic carbonylation of nitrobenzene and amines by mononuclear palladium(II) complexes containing substituted pyridine ligands. Polyhedron, 1996, 15, 2093-2101. https://doi.org/10.1016/0277-5387(95)00470-X

    Article  CAS  Google Scholar 

  11. I. Kamiya, E. Nishinaka, and A. Ogawa. Palladium(II) acetate in pyridine as an effective catalyst for highly regioselective hydroselenation of alkynes. J. Org. Chem., 2005, 70, 696-698. https://doi.org/10.1021/jo048727j

    Article  CAS  Google Scholar 

  12. K. M. Engle and J.-Q. Yu. Developing ligands for palladium(II)-catalyzed C–H functionalization: Intimate dialogue between ligand and substrate. J. Org. Chem., 2013, 78, 8927-8955. https://doi.org/10.1021/jo400159y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Krogul, J. Skupińska, and G. Litwinienko. Tuning of the catalytic properties of PdCl2(XnPy)2 complexes by variation of the basicity of aromatic ligands. J. Mol. Catal. A: Chem., 2014, 385, 141-148. https://doi.org/10.1016/j.molcata.2014.01.020

    Article  CAS  Google Scholar 

  14. C. A. Salazar, J. J. Gair, K. N. Flesch, I. A. Guzei, J. C. Lewis, and S. S. Stahl. Catalytic behavior of mono-N-protected amino-acid ligands in ligand-accelerated C–H activation by palladium(II). Angew. Chem., Int. Ed., 2020, 59, 10873-10877. https://doi.org/10.1002/anie.202002484

    Article  CAS  Google Scholar 

  15. G. Kurpik, A. Walczak, M. Gołdyn, J. Harrowfield, and A. R. Stefankiewicz. Pd(II) complexes with pyridine ligands: substituent effects on the NMR data, crystal structures, and catalytic activity. Inorg. Chem., 2022, 61, 14019-14029. https://doi.org/10.1021/acs.inorgchem.2c01996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. D. D. Perrin and W. L. F. Armarego. Purification of Laboratory Chemicals. Oxford: Pergamon, 1988.

  17. T. A. Stephenson, S. M. Morehouse, A. R. Powell, J. P. Heffer, and G. Wilkinson. 667. Carboxylates of palladium, platinum, and rhodium, and their adducts. J. Chem. Soc., 1965, 3632-3640. https://doi.org/10.1039/JR9650003632

    Article  Google Scholar 

  18. R. D. Svetogorov, P. V. Dorovatovskii, and V. A. Lazarenko. Belok/XSA diffraction beamline for studying crystalline samples at Kurchatov synchrotron radiation source. Cryst. Res. Technol., 2020, 55, 1900184. https://doi.org/10.1002/crat.201900184

    Article  CAS  Google Scholar 

  19. W. Kabsch. XDS. Acta Crystallogr., Sect. D: Biol. Crystallogr., 2010, 66(2), 125-132. https://doi.org/10.1107/s0907444909047337

    Article  CAS  Google Scholar 

  20. APEX3, SAINT and SADABS. Madison, Wisconsin, USA: Bruker AXS, 2016.

  21. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr., 2015, 48, 3-10. https://doi.org/10.1107/S1600576714022985

    Article  CAS  Google Scholar 

  22. G. M. Sheldrick. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3-8. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  23. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  24. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42, 339-341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  25. S. V. Kravtsova, I. P. Romm, A.I. Stash, and V. K. Belsky. Bis(acetato-O)bis(pyridine-N)palladium(II) monohydrate and bis(acetato-O)bis(diethylamine-N)palladium(II). Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1996, 52(9), 2201-2204. https://doi.org/10.1107/s0108270196005732

    Article  Google Scholar 

  26. B. Milani, E. Alessio, G. Mestroni, A. Sommazzi, F. Garbassi, E. Zangrando, N. Bresciani-Pahor, and L. Randaccio. Synthesis and characterization of monochelated carboxylatopalladium(II) complexes with nitrogen-donor chelating ligands. Crystal structures of diacetato(1,10-phenanthroline)- and diacetato(2,9-dimethyl-1,10-phenanthroline)-palladium(II). J. Chem. Soc., Dalton Trans., 1994, 1903-1911. https://doi.org/10.1039/DT9940001903

    Article  Google Scholar 

  27. I. A. Yakushev, I. A. Stebletsova, N. V. Cherkashina, A. B. Kornev, N. S. Smirnova, and A. A. Balakina. Synthesis and structural characterization of palladium(II) diacetato-(5-nitro-1,10-phenanthroline). J. Struct. Chem., 2021, 62(9), 1411-1415. https://doi.org/10.1134/S0022476621090092

    Article  CAS  Google Scholar 

  28. A. Bondi. Van der Waals volumes and radii. J. Phys. Chem., 1964, 68, 441-451. https://doi.org/10.1021/j100785a001

    Article  CAS  Google Scholar 

  29. M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, and D. G. Truhlar. Consistent van der Waals radii for the whole main group. J. Phys. Chem. A, 2009, 113, 5806-5812. https://doi.org/10.1021/jp8111556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. A. Adonin, M. A. Bondarenko, A. S. Novikov, and M. N. Sokolov. Halogen bonding in isostructural Co(II) complexes with 2-halopyridines. Crystals, 2020, 10, 289. https://doi.org/10.3390/cryst10040289

    Article  CAS  Google Scholar 

  31. I. J. S. Fairlamb. Redox-active NOx ligands in palladium-mediated processes. Angew. Chem., Int. Ed., 2015, 54, 10415-10427. https://doi.org/10.1002/anie.201411487

    Article  CAS  Google Scholar 

  32. N. V. Cherkashina, A. V. Churakov, I. A. Yakushev, I. P. Stolyarov, V. N. Khrustalev, E. V. Khramov, A. A. Markov, N. S. Smirnova, Ya. V. Zubavichus, P. V. Dorovatovskii, Zh. V. Dobrokhotova, A. B. Ilyukhin, and M. N. Vargaftik. The first heterometallic acetate-bridged Pt(II)–Pd(II) complex: Synthesis, structure, and formation of bimetallic PtPd2 nanoparticles. Russ. J. Coord. Chem., 2019, 45, 253-265. https://doi.org/10.1134/S107032841904002X

    Article  CAS  Google Scholar 

  33. N. Yu. Kozitsyna, S. E. Nefedov, A. P. Klyagina, A. A. Markov, Z. V. Dobrokhotova, Y. A. Velikodny, D. I. Kochubey, T. S. Zyubina, A. E. Gekhman, M. N. Vargaftik, and I. I. Moiseev. Novel heterometallic palladium–silver complex. Inorg. Chim. Acta, 2011, 370, 382-387. https://doi.org/10.1016/j.ica.2011.02.003

    Article  CAS  Google Scholar 

  34. I. A. Yakushev, M. A. Dyuzheva, N. V. Cherkashina, A. B. Kornev, N. S. Smirnova, and M. N. Vargaftik. Synthesis and crystal structure of pentanuclear heterometallic Pd(II)–La(III) acetate complex. J. Struct. Chem., 2021, 62, 1511-1515. https://doi.org/10.1134/S0022476621100048

    Article  CAS  Google Scholar 

  35. L. Yu. Ukhin, N. A. Dolgopolova, L. G. Kuzmina, and Yu. T. Struchkov. Formation of trinuclear complexes with bisacyl--allyl ligands from palladium acetate and pyrylium salts. J. Organomet. Chem., 1981, 210, 263-272. https://doi.org/10.1016/S0022-328X(00)82238-X

    Article  CAS  Google Scholar 

  36. T. A. Stromnova, M. V. Dayneko, A. V. Churakov, L. G. Kuzmina, J. Cámpora, P. Palma, and E. Carmona. Trinuclear palladium complexes containing terminal nitrosyl ligands: Behavior in solid state and in solution. X-ray structures of Pd3(NO)2(-OCOCX3)4(2-ArH)2 (X = F, Cl; ArH = toluene or benzene). Inorg. Chim. Acta, 2006, 359, 1613-1618. https://doi.org/10.1016/j.ica.2005.11.037

    Article  CAS  Google Scholar 

  37. Z. M. Png, J. R. Cabrera-Pardo, J. Peiró Cadahía, and M. J. Gaunt. Diastereoselective C–H carbonylative annulation of aliphatic amines: A rapid route to functionalized -lactams. Chem. Sci., 2018, 9, 7628-7633. https://doi.org/10.1039/C8SC02855A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science of the Russian Federation within the State Assignment for the Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Yakushev.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 3, 107273.https://doi.org/10.26902/JSC_id107273

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakushev, I.A., Ogarkova, N.K., Sosunov, E.A. et al. Synthesis and Structures of Mono- and Trinuclear Complexes of Palladium(II) with 2-Chloropyridine. J Struct Chem 64, 377–385 (2023). https://doi.org/10.1134/S0022476623030046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623030046

Keywords

Navigation