Skip to main content
Log in

Syntheses and Crystal Structures of Copper(II) and Zinc(II) Complexes Derived from 5-Bromo-2-((Cyclopropylimino)Methyl)Phenol with Antibacterial Activity

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Four new complexes of copper(II) and zinc(II), [Cu2L4] (1), [Cu2L2(N(CN)2)2]n (2), [Zn(HL)2I2] (3) and [Zn(HL)2(NCS)2] (4), where L is 5-bromo-2-((cyclopropylimino)methyl)phenolate, HL is the zwitterionic form of 5-bromo-2-((cyclopropylimino)methyl)phenol, were synthesized and characterized by elemental analysis and IR and UV-Vis spectroscopy. Structures of the complexes were further confirmed by single crystal X-ray structure determination. Complex 1 is a phenolate bridged dinuclear copper(II) compound, with the Cu atom in square pyramidal coordination. Complex 2 is a phenolate and dicyanamide bridged polynuclear copper(II) compound, with the Cu atom in square pyramidal coordination. Complexes 3 and 4 are mononuclear zinc(II) compounds, with the Zn atoms in tetrahedral coordination. The compounds were assayed for their antimicrobial activities. Complexes 1 and 2 have the most activities on B. subtilis, with MIC values of 1.2 μg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

REFERENCES

  1. N. Kordestani, H. Amiri Rudbari, A. R. Fernandes, L. R. Raposo, A. Luz, P. V. Baptista, G. Bruno, R. Scopelliti, Z. Fateminia, N. Micale, N. Tumanov, J. Wouters, A. Abbasi Kajani, and A.-K. Bordbar. Copper(II) complexes with tridentate halogen-substituted Schiff base ligands: Synthesis, crystal structures and investigating the effect of halogenation, leaving groups and ligand flexibility on antiproliferative activities. Dalton Trans., 2021, 50(11), 3990-4007. https://doi.org/10.1039/d0dt03962d

    Article  CAS  PubMed  Google Scholar 

  2. Y. Yuan, X.-K. Lu, G.-Q. Zhou, and X.-Y. Qiu. Syntheses, characterization, crystal structures and antimicrobial activity of Schiff base copper(II) complexes derived from 2-bromo-6-((2-(isopropylamino)ethylimino)methyl)phenol. Acta Chim. Slov., 2021, 68(4), 1008-1015. https://doi.org/10.17344/acsi.2021.7070

    Article  CAS  Google Scholar 

  3. S. Han and Y. Wang. Synthesis, Characterization and crystal structures of Schiff base copper complexes with urease inhibitory activity. Acta Chim. Slov., 2021, 68(4), 961-969. https://doi.org/10.17344/acsi.2021.6965

    Article  CAS  Google Scholar 

  4. T. K. Ghosh, S. Jana, S. Jana, and A. Ghosh. Tetra- and poly-nuclear Cd(II) complexes of an N3O4 Schiff base ligand: Crystal structures, electrical conductivity and photoswitching properties. New J. Chem., 2020, 44(34), 14733-14743. https://doi.org/10.1039/d0nj03325a

    Article  CAS  Google Scholar 

  5. S. U. Parsekar, K. Paliwal, P. Haldar, P. K. S. Antharjanam, and M. Kumar. Synthesis, characterization, crystal structure, DNA and HSA interactions, and anticancer activity of a mononuclear Cu(II) complex with a Schiff base ligand containing a thiadiazoline moiety. ACS Omega, 2022, 7(3), 2881-2896. https://doi.org/10.1021/acsomega.1c05750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. Mukherjee, S. Hansda, S. Nandi, T. Chakraborty, D. Samanta, K. Acharya, and D. Das. Azide-mediated unusual in situ transformation of Mannich base to Schiff–Mannich base and isolation of their Cu(II) complexes: Crystal structure, theoretical inspection and anticancer activities. Dalton Trans., 2021, 50(38), 13374-13386. https://doi.org/10.1039/d1dt01740c

    Article  CAS  PubMed  Google Scholar 

  7. M. Liu, H. Yang, D. Li, Q. Yao, H. Wang, Z. Zhang, and J. Dou. Zn and Cu complexes of o-van-gly Schiff base: Syntheses, crystal structures, fluorescence sensing and anticancer properties. Inorg. Chim. Acta, 2021, 522, 120384. https://doi.org/10.1016/j.ica.2021.120384

    Article  CAS  Google Scholar 

  8. S. Esmaielzadeh and E. Zarenezhad. Copper(II) Schiff base complexes with catalyst property: Experimental, theoretical, thermodynamic and biological studies. Acta Chim. Slov., 2018, 416-428. https://doi.org/10.17344/acsi.2018.4159

    Article  Google Scholar 

  9. Q. Poladian, O. Şahin, T. Karakurt, B. İlhan-Ceylan, and Y. Kurt. A new zinc(II) complex with N2O2-tetradentate Schiff-base derived from pyridoxal-S-methylthiosemicarbazone: Synthesis, characterization, crystal structure, DFT, molecular docking and antioxidant activity studies. Polyhedron, 2021, 201, 115164. https://doi.org/10.1016/j.poly.2021.115164

    Article  CAS  Google Scholar 

  10. A. G. Ertürk, V. Sekeroglu, E. Yildirim, G. Dindaroglu, and Z. A. Sekeroglu. Antipyrine derived-Schiff base copper complex: Synthesis, characterization, and in vitro evaluation. Inorg. Chim. Acta, 2022, 543, 121146. https://doi.org/10.1016/j.ica.2022.121146

    Article  CAS  Google Scholar 

  11. S.-F. Yu, X.-Y. Qiu, and S.-J. Liu. Syntheses, crystal structures and antimicrobial property of Schiff base copper(II) complexes. Acta Chim. Slov., 2020, 67(4), 1301-1308. https://doi.org/10.17344/acsi.2020.6321

    Article  CAS  Google Scholar 

  12. A. M. S. Hossain, J. M. Méndez-Arriaga, C. Xia, J. Xie, and S. Gómez-Ruiz. Metal complexes with ONS donor Schiff bases. A review. Polyhedron, 2022, 217, 115692. https://doi.org/10.1016/j.poly.2022.115692

    Article  CAS  Google Scholar 

  13. G. Paraskevopoulos, S. Monteiro, R. Vosátka, M. Krátký, L. Navrátilová, F. Trejtnar, J. Stolaříková, and J. Vinšová. Corrigendum to “Novel salicylanilides from 4,5-dihalogenated salicylic acids: Synthesis, antimicrobial activity and cytotoxicity”. Bioorg. Med. Chem., 2017, 25(8), 2530. https://doi.org/10.1016/j.bmc.2017.02.053

    Article  CAS  Google Scholar 

  14. M. Zhang, D.-M. Xian, H.-H. Li, J.-C. Zhang, and Z.-L. You. Synthesis and structures of halo-substituted aroylhydrazones with antimicrobial activity. Aust. J. Chem., 2012, 65(4), 343. https://doi.org/10.1071/ch11424

    Article  CAS  Google Scholar 

  15. H.-F. Guo, Y. Pan, D.-Y. Ma, and P. Yan. Effect of electron-withdrawing groups of Schiff base and its palladium complex on antimicrobial and catalytic activities. Chin. J. Inorg. Chem., 2013, 29(7), 1447-1453.

  16. N. P. Rai, V. K. Narayanaswamy, T. Govender, B. K. Manuprasad, S. Shashikanth, and P. N. Arunachalam. Design, synthesis, characterization, and antibacterial activity of {5-chloro-2-[(3-substitutedphenyl-1,2,4-oxadiazol-5-yl)-methoxy]-phenyl}-(phenyl)-methanones. Eur. J. Med. Chem., 2010, 45(6), 2677-2682. https://doi.org/10.1016/j.ejmech.2010.02.021

    Article  CAS  PubMed  Google Scholar 

  17. H. Kargar, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, H. A. Rudbari, A. A. Ardakani, S. Sedighi-Khavidak, K. S. Munawar, M. Ashfaq, and M. N. Tahir. Binuclear Zn(II) Schiff base complexes: Synthesis, spectral characterization, theoretical studies and antimicrobial investigations. Inorg. Chim. Acta, 2022, 530, 120677. https://doi.org/10.1016/j.ica.2021.120677

    Article  CAS  Google Scholar 

  18. T. Vijayan, J. Kim, M. Azam, S. I. Al-Resayes, A. Stalin, B. S. Kannan, A. Jayamani, A. Ayyakannu, and S. Nallathambi. Influence of co-ligand on the biological properties of Schiff base metal complexes: Synthesis, characterization, cytotoxicity, and antimicrobial studies. Appl. Organomet. Chem., 2022, 36(3). https://doi.org/10.1002/aoc.6542

    Article  Google Scholar 

  19. J.-L. Hou, H.-Y. Wu, C.-B. Sun, Y. Bi, and W. Chen. Synthesis and X-ray crystal structures of trinuclear nickel(II) complexes derived from Schiff bases and acetate ligands with biological activity. Acta Chim. Slov., 2020, 67(3), 860-865. https://doi.org/10.17344/acsi.2020.5824

    Article  CAS  Google Scholar 

  20. L.-W. Xue, X. Fu, G.-Q. Zhao, and Q.-B. Li. Zinc(II) complexes derived from Schiff bases: Syntheses, structures, and biological activity. Acta Chim. Slov., 2021, 68(1), 17-24. https://doi.org/10.17344/acsi.2020.5817

    Article  CAS  Google Scholar 

  21. C.-L. Zhang, X.-Y. Qiu, and S.-J. Liu. Vanadium(V) complexes with bromo-substituted hydrazones: Synthesis, characterization, X-ray crystal structures and antimicrobial activity. Acta Chim. Slov., 2019, 66(3), 719-725. https://doi.org/10.17344/acsi.2019.5241

    Article  CAS  Google Scholar 

  22. L.-Y. He, X.-Y. Qiu, J.-Y. Cheng, S.-J. Liu, and S.-M. Wu. Synthesis, characterization and crystal structures of vanadium(V) complexes derived from halido-substituted tridentate hydrazone compounds with antimicrobial activity. Polyhedron, 2018, 156, 105-110. https://doi.org/10.1016/j.poly.2018.09.017

    Article  CAS  Google Scholar 

  23. S. M. Wu, X. Y. Qiu, J. C. Wang, S. J. Liu, and L. Y. He. Synthesis, characterization, and crystal structures of oxidovanadium(V) complexes derived from 2-chloro-N-(3,5-dichloro-2-hydroxybenzylidene)benzohydrazide with antimicrobial activity. Russ. J. Coord. Chem., 2019, 45(5), 378-384. https://doi.org/10.1134/s1070328419040109

    Article  CAS  Google Scholar 

  24. P. Vianello, O. A. Botrugno, A. Cappa, G. Ciossani, P. Dessanti, A. Mai, A. Mattevi, G. Meroni, S. Minucci, F. Thaler, M. Tortorici, P. Trifiró, S. Valente, M. Villa, M. Varasi, and C. Mercurio. Synthesis, biological activity and mechanistic insights of 1-substituted cyclopropylamine derivatives: A novel class of irreversible inhibitors of histone demethylase KDM1A. Eur. J. Med. Chem., 2014, 86, 352-363. https://doi.org/10.1016/j.ejmech.2014.08.068

    Article  CAS  PubMed  Google Scholar 

  25. Z.-L. You, X. Han, P. Zhou, and L. Zhang. Syntheses and structures of 2-bromo-4-chloro-6-(cyclopropyliminomethyl)phenol and its zinc(II) complex. J. Coord. Chem., 2008, 61(13), 2046-2052. https://doi.org/10.1080/00958970701861623

    Article  CAS  Google Scholar 

  26. Z.-L. You and J.-Y. Chi. Syntheses and structures of 2,4-dichloro-6-(cyclopropyliminomethyl)phenol and its copper(II) complex. J. Coord. Chem., 2006, 59(17), 1999-2004. https://doi.org/10.1080/00958970600717827

    Article  CAS  Google Scholar 

  27. Bruker, SMART (Version 5.625) and SAINT (Version 6.01). Madison, Wisconsin, USA: Bruker AXS, 2007.

  28. G. M. Sheldrick. SADABS. Program for Empirical Absorption Correction of Area Detector. Göttingen, Germany: University of Göttingen, 1996.

  29. G. M. Sheldrick. SHELXTL V5.1 Software Reference Manual. Madison, Wisconsin, USA: Bruker AXS, 1997.

  30. J. Meletiadis, J. F. G. M. Meis, J. W. Mouton, J. P. Donnelly, and P. E. Verweij. Comparison of NCCLS and 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) methods of in vitro susceptibility testing of filamentous fungi and development of a new simplified method. J. Clin. Microbiol., 2000, 38(8), 2949-2954. https://doi.org/10.1128/jcm.38.8.2949-2954.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. W. J. Geary. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev., 1971, 7(1), 81-122. https://doi.org/10.1016/s0010-8545(00)80009-0

    Article  CAS  Google Scholar 

  32. S. Manna, E. Zangrando, H. Puschmann, and S. C. Manna. Tetranuclear Schiff base copper(II) complexes: Syntheses, crystal structure, DNA/protein binding and catecholase-like activity. Polyhedron, 2019, 162, 285-292. https://doi.org/10.1016/j.poly.2019.01.057

    Article  CAS  Google Scholar 

  33. P. Chakraborty, S. Majumder, A. Jana, and S. Mohanta. Syntheses, structures, catecholase activity, spectroscopy and electrochemistry of a series of manganese(III) complexes: Role of auxiliary anionic ligand on catecholase activity. Inorg. Chim. Acta, 2014, 410, 65-75. https://doi.org/10.1016/j.ica.2013.10.013

    Article  CAS  Google Scholar 

  34. P. Talukder, S. Shit, A. Sasmal, S. R. Batten, B. Moubaraki, K. S. Murray, and S. Mitra. An antiferromagnetically coupled hexanuclear copper(II) Schiff base complex containing phenoxo and dicyanamido bridges: Structural aspects and magnetic properties. Polyhedron, 2011, 30(11), 1767-1773. https://doi.org/10.1016/j.poly.2011.03.049

    Article  CAS  Google Scholar 

  35. K. Bhar, S. Chattopadhyay, S. Khan, R. K. Kumar, T. K. Maji, J. Ribas, and B. K. Ghosh. Syntheses, structures and magnetic properties of 1,5 dicyanamide bridged coordination polymers of copper(II) and nickel(II) containing a tetradentate N-donor Schiff base. Inorg. Chim. Acta, 2011, 370(1), 492-498. https://doi.org/10.1016/j.ica.2011.02.055

    Article  CAS  Google Scholar 

  36. A. Ray, G. Pilet, C. J. Gómez-García, and S. Mitra. Designing dicyanamide bridged 1D molecular architecture from a mononuclear copper(II) Schiff base precursor: Syntheses, structural variations and magnetic study. Polyhedron, 2009, 28(3), 511-520. https://doi.org/10.1016/j.poly.2008.11.054

    Article  CAS  Google Scholar 

  37. H. Grove, M. Julve, F. Lloret, P. E. Kruger, K. W. Törnroos, and J. Sletten. Syntheses, crystal structures and magnetic properties of copper(II) polynuclear and dinuclear compounds with 2,3-bis(2-pyridyl)pyrazine (dpp) and pseudohalide as ligands. Inorg. Chim. Acta, 2001, 325(1/2), 115-124. https://doi.org/10.1016/s0020-1693(01)00642-9

    Article  CAS  Google Scholar 

  38. S. S. Massoud and F. A. Mautner. Synthesis and structure determination of two new dinuclear end-to-end doubly bridged azido- and thiocyanato-copper(II) complexes derived from diethyldiethylenetriamine. Inorg. Chim. Acta, 2005, 358(12), 3334-3340. https://doi.org/10.1016/j.ica.2005.05.007

    Article  CAS  Google Scholar 

  39. M. F. Iskander, T. E. Khalil, R. Werner, W. Haase, I. Svoboda, and H. Fuess. Synthesis, reactivity and magnetochemical studies on copper(II) complexes derived from N-salicylidenearoylhydrazines. X-ray structure of [mononitratoOO(–1)(N-salicylidenatobenzoylhydrazine)ONO(–1)]copper(II) monohydrate. Polyhedron, 2000, 19(8), 949-958. https://doi.org/10.1016/s0277-5387(00)00340-5

    Article  CAS  Google Scholar 

  40. S. Chandra and A. K. Sharma. Biological and spectral studies of transition metal complexes with a quinquedentate Schiff base, 2,6-diacetylpyridine bis(thiocarbohydrazone). J. Coord. Chem., 2009, 62(22), 3688-3700. https://doi.org/10.1080/00958970903121305

    Article  CAS  Google Scholar 

  41. J. Jiang, P. Liang, H. Yu, and Z. You. Synthesis, crystal structures and urease inhibition of mononuclear copper(II) and nickel(II) complexes with Schiff base ligands. Acta Chim. Slov., 2022, 69(3), 629-637. https://doi.org/10.17344/acsi.2022.7513

    Article  CAS  Google Scholar 

  42. H. Kargar, R. Behjatmanesh-Ardakani, V. Torabi, M. Kashani, Z. Chavoshpour-Natanzi, Z. Kazemi, V. Mirkhani, A. Sahraei, M. N. Tahir, M. Ashfaq, and K. S. Munawar. Synthesis, characterization, crystal structures, DFT, TD-DFT, molecular docking and DNA binding studies of novel copper(II) and zinc(II) complexes bearing halogenated bidentate N,O-donor Schiff base ligands. Polyhedron, 2021, 195, 114988. https://doi.org/10.1016/j.poly.2020.114988

    Article  CAS  Google Scholar 

  43. H. Kargar, R. Behjatmanesh-Ardakani, V. Torabi, A. Sarvian, Z. Kazemi, Z. Chavoshpour-Natanzi, V. Mirkhani, A. Sahraei, M. Nawaz Tahir, and M. Ashfaq. Novel copper(II) and zinc(II) complexes of halogenated bidentate N,O-donor Schiff base ligands: Synthesis, characterization, crystal structures, DNA binding, molecular docking, DFT and TD-DFT computational studies. Inorg. Chim. Acta, 2021, 514, 120004. https://doi.org/10.1016/j.ica.2020.120004

    Article  CAS  Google Scholar 

  44. S. Slassi, A. El-Ghayoury, M. Aarjane, K. Yamni, and A. Amine. New copper(II) and zinc(II) complexes based on azo Schiff base ligand: Synthesis, crystal structure, photoisomerization study and antibacterial activity. Appl. Organomet. Chem., 2020, 34(4). https://doi.org/10.1002/aoc.5503

    Article  Google Scholar 

  45. D.-L. Peng and N. Sun. Syntheses, characterization and crystal structures of Schiff base zinc(II) complexes with antibacterial activity. Acta Chim. Slov., 2018, 65(4), 895-901. https://doi.org/10.17344/acsi.2018.4543

    Article  CAS  Google Scholar 

  46. S. Shit, M. Nandy, D. Saha, L. Zhang, W. Schmitt, C. Rizzoli, and T. N. G. Row. Synthesis, crystal structure and fluorescence properties of two dinuclear zinc(II) complexes incorporating tridentate (NNO) Schiff bases. J. Coord. Chem., 2016, 69(16), 2403-2414. https://doi.org/10.1080/00958972.2016.1197390

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Ningbo Public Welfare Funds (Project Nos. 202002N3056 and 2021S142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-Y. Qiu.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 3, 106829.https://doi.org/10.26902/JSC_id106829

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Qiu, XY., Zheng, ZX. et al. Syntheses and Crystal Structures of Copper(II) and Zinc(II) Complexes Derived from 5-Bromo-2-((Cyclopropylimino)Methyl)Phenol with Antibacterial Activity. J Struct Chem 64, 347–364 (2023). https://doi.org/10.1134/S0022476623030022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623030022

Keywords

Navigation