Skip to main content
Log in

AB INITIO STUDY OF L4-, L3-6-, AND L3-4-6-DIAMOND-LIKE TUBULAR NANOSTRUCTURES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The ab initio study of tubular nanostructures formed by folding monatomic diamond-like L4, L3-6, and L3-4-6 layers is reported. Density functional theory calculations of the structure show that only polyprismatic tubes based on the L4 layer, designated as (n, 0)L4, and characterized by the n/mmm point group can exist. The other tubular nanostructures are unstable even at a temperature close to 0 K and transform into amorphous or hybrid nanostructures as well as carbon nanotubes. Diameters of the studied (n, 0)L4 tubes range from 0.1997 nm to 0.4667 nm; the translation parameter varies from 0.1622 nm to 0.1634 nm. By the molecular dynamics simulation it is found that an isolated (5, 0)L4 tube having the minimum total energy can be stable at least up to 150 K. In the case of the synthesis of bundles of the most stable L4-diamond-like tubes, they can be unambiguously identified using the calculated X-ray absorption spectrum, the Raman spectrum, and the powder X-ray diffraction pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. H. O. Pierson. Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing and Applications. Park Ridge: Noyes, 1993.

  2. Ye. A. Belenkov, V. V. Ivanovskaya, and A.L. Ivanovskii. Nanoalmazy i rodstvennye uglerodnye nanomaterialy (Nanodiamonds and Related Carbon Nanomaterials). Ekaterinburg: UrO RAN, 2008. [In Russian]

  3. J. Robertson. Hard amorphous (diamond-like) carbons. Prog. Solid State Chem., 1991, 21(4), 199-333. https://doi.org/10.1016/0079-6786(91)90002-h

    Article  CAS  Google Scholar 

  4. E. A. Belenkov and V. A. Greshnyakov. Structural varieties of polytypes. Phys. Solid State, 2017, 59(10), 1926-1933. https://doi.org/10.1134/s1063783417100055

    Article  CAS  Google Scholar 

  5. Y. Yue, Y. Gao, W. Hu, B. Xu, J. Wang, X. Zhang, Q. Zhang, Y. Wang, B. Ge, Z. Yang, Z. Li, P. Ying, X. Liu, D. Yu, B. Wei, Z. Wang, X.-F. Zhou, L. Guo, and Y. Tian. Hierarchically structured diamond composite with exceptional toughness. Nature, 2020, 582(7812), 370-374. https://doi.org/10.1038/s41586-020-2361-2

    Article  CAS  PubMed  Google Scholar 

  6. Y. Zheng, C. Li, J. Liu, J. Wei, X. Zhang, H. Ye, and X. Ouyang. Chemical vapor deposited diamond with versatile grades: from gemstone to quantum electronics. Front. Mater. Sci., 2022, 16(1), 220590. https://doi.org/10.1007/s11706-022-0590-z

    Article  Google Scholar 

  7. E. A. Belenkov and V. A. Greshnyakov. Structure, properties, and possible mechanisms of formation of diamond-like phases. Phys. Solid State, 2016, 58(10), 2145-2154. https://doi.org/10.1134/s1063783416100073

    Article  CAS  Google Scholar 

  8. L. K. Rysaeva, D. S. Lisovenko, V. A. Gorodtsov, and J. A. Baimova. Stability, elastic properties and deformation behavior of graphene-based diamond-like phases. Comput. Mater. Sci., 2020, 172, 109355. https://doi.org/10.1016/j.commatsci.2019.109355

    Article  CAS  Google Scholar 

  9. E. A. Belenkov and V. A. Greshnyakov. Classification of structural modifications of carbon. Phys. Solid State, 2013, 55(8), 1754-1764. https://doi.org/10.1134/s1063783413080039

    Article  CAS  Google Scholar 

  10. R. A. Brazhe and V. S. Nefedov. Thermal conductivity of planar and nanotubular supracrystalline structures at temperatures below the Debye temperature. Phys. Solid State, 2014, 56(3), 626-630. https://doi.org/10.1134/s1063783414030068

    Article  CAS  Google Scholar 

  11. K. Ohno, H. Satoh, T. Iwamoto, H. Tokoyama, and H. Yamakado. Exploration of carbon allotropes with four-membered ring structures on quantum chemical potential energy surfaces. J. Comput. Chem., 2019, 40(1), 14-28. https://doi.org/10.1002/jcc.25556

    Article  CAS  PubMed  Google Scholar 

  12. A. Poater, A. G. Saliner, R. Carbó-Dorca, J. Poater, M. Solà, L. Cavallo, and A. P. Worth. Modeling the structure-property relationships of nanoneedles: A journey toward nanomedicine. J. Comput. Chem., 2009, 30(2), 275-284. https://doi.org/10.1002/jcc.21041

    Article  CAS  PubMed  Google Scholar 

  13. K. P. Katin, S. A. Shostachenko, A. I. Avkhadieva, and M. M. Maslov. Geometry, energy, and some electronic properties of carbon polyprismanes: Ab initio and tight-binding study. Adv. Phys. Chem., 2015, 2015, 1-6. https://doi.org/10.1155/2015/506894

    Article  CAS  Google Scholar 

  14. M. M. Maslov, K. S. Grishakov, M. A. Gimaldinova, and K. P. Katin. Carbon vs silicon polyprismanes: A comparative study of metallic sp3-hybridized allotropes. Fullerenes, Nanotubes, Carbon Nanostruct., 2020, 28(2), 97-103. https://doi.org/10.1080/1536383x.2019.1680974

    Article  CAS  Google Scholar 

  15. V. A. Greshnyakov and E. A. Belenkov. Structure, electronic properties, and stability of carbon double layers composed of atoms in the sp3-hybridized state. J. Exp. Theor. Phys., 2021, 133(6), 744-753. https://doi.org/10.1134/s1063776121120086

    Article  CAS  Google Scholar 

  16. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter, 2017, 29(46), 465901. https://doi.org/10.1088/1361-648x/aa8f79

    Article  CAS  PubMed  Google Scholar 

  17. J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18), 3865-3868. https://doi.org/10.1103/physrevlett.77.3865

    Article  CAS  PubMed  Google Scholar 

  18. N. Troullier and J. L. Martins. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, 1991, 43(3), 1993-2006. https://doi.org/10.1103/physrevb.43.1993

    Article  CAS  Google Scholar 

  19. H. J. Monkhorst and J. D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12), 5188-5192. https://doi.org/10.1103/physrevb.13.5188

    Article  Google Scholar 

  20. O. Bunău and M. Calandra. Projector augmented wave calculation of X-ray absorption spectra at the at the L2,3 edges. Phys. Rev. B, 2013, 87(20), 205105. https://doi.org/10.1103/physrevb.87.205105

    Article  Google Scholar 

  21. M. Lazzeri and F. Mauri. First-principles calculation of vibrational Raman spectra in large systems: signature of small rings in crystalline SiO2. Phys. Rev. Lett., 2003, 90(3), 036401. https://doi.org/10.1103/physrevlett.90.036401

    Article  PubMed  Google Scholar 

  22. Ya. S. Umanskiy, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya (Crystallography, Radiography and Electron Microscopy). Moscow: Metallurgiya, 1982. [In Russian]

  23. V. A. Greshnyakov, E. A. Belenkov, and M. M. Brzhezinskaya. Theoretical investigation of phase transitions of graphite and cubic diamond into hexagonal 2H diamond under high pressures. Phys. Status Solidi, 2019, 256(7), 1800575. https://doi.org/10.1002/pssb.201800575

    Article  CAS  Google Scholar 

  24. V. Greshnyakov and E. Belenkov. Structure and properties of a chiral polymorph of diamond with a crystal lattice of the SA3 type. Lett. Mater., 2021, 11(4), 479-484. https://doi.org/10.22226/2410-3535-2021-4-479-484

    Article  Google Scholar 

  25. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications: Topics in Applied Physics, Vol. 80 / Eds. M. S. Dresselhaus, G. Dresselhaus, and P. Avouris. Berlin, Heidelberg: Springer, 2001. https://doi.org/10.1007/3-540-39947-x

    Book  Google Scholar 

  26. V. A. Greshnyakov and E. A. Belenkov. Calculation of the physicochemical characteristics of a new orthorhombic form of diamond. Inorg. Mater., 2018, 54(2), 111-116. https://doi.org/10.1134/s0020168518020061

    Article  CAS  Google Scholar 

  27. E. A. Belenkov, M. M. Brzhezinskaya, and V. A. Greshnyakov. Crystalline structure and properties of diamond-like materials. Nanosyst.: Phys., Chem., Math., 2017, 127-136. https://doi.org/10.17586/2220-8054-2017-8-1-127-136

    Article  Google Scholar 

  28. V. A. Greshnyakov and E. A. Belenkov. Ab initio calculations of carbon bilayers with diamond-like structures. J. Struct. Chem., 2020, 61(6), 835-843. https://doi.org/10.1134/s0022476620060013

    Article  CAS  Google Scholar 

  29. P. E. Eaton, Y. S. Or, and S. J. Branca. Pentaprismane. J. Am. Chem. Soc., 1981, 103(8), 2134-2136. https://doi.org/10.1021/ja00398a062

    Article  CAS  Google Scholar 

  30. E. M. Baitinger, E. A. Belenkov, M. M. Brzhezinskaya, and V. A. Greshnyakov. Specific features of the structure of detonation nanodiamonds from results of electron microscopy investigations. Phys. Solid State, 2012, 54(8), 1715-1722. https://doi.org/10.1134/s1063783412080057

    Article  CAS  Google Scholar 

  31. A. Lippitz, J. F. Friedrich, and W. E. S. Unger. Plasma bromination of HOPG surfaces: A NEXAFS and synchrotron XPS study. Surf. Sci., 2013, 611, L1-L7. https://doi.org/10.1016/j.susc.2013.01.020

    Article  CAS  Google Scholar 

  32. M. Brzhezinskaya, E. A. Belenkov, V. A. Greshnyakov, G. E. Yalovega, and I. O. Bashkin. New aspects in the study of carbon-hydrogen interaction in hydrogenated carbon nanotubes for energy storage applications. J. Alloys Compd., 2019, 792, 713-720. https://doi.org/10.1016/j.jallcom.2019.04.107

    Article  CAS  Google Scholar 

  33. C. Ehlert, W. E. S. Unger, and P. Saalfrank. C K-edge NEXAFS spectra of graphene with physical and chemical defects: a study based on density functional theory. Phys. Chem. Chem. Phys., 2014, 16(27), 14083-14095. https://doi.org/10.1039/c4cp01106f

    Article  CAS  PubMed  Google Scholar 

  34. H. Kuzmany, R. Pfeiffer, M. Hulman, and C. Kramberger. Raman spectroscopy of fullerenes and fullerene–nanotube composites. Philos. Trans. R. Soc. London, Ser., 2004, 362(1824), 2375-2406. https://doi.org/10.1098/rsta.2004.1446

    Article  CAS  Google Scholar 

  35. A. Jorio and R. Saito. Raman spectroscopy for carbon nanotube applications. J. Appl. Phys., 2021, 129(2), 021102. https://doi.org/10.1063/5.0030809

    Article  CAS  Google Scholar 

  36. I. Sanc. Pattern: 00-041-1478. Graphite-2H, polytechna (ICDD grant in aid). Czechoslovakia: Panska, Foreign Trade Corporation, 1990.

  37. H. E. Swanson and R. K. Fuyat. Natl. Bur. Stand. Circ., 1953, 539(2), 5.

  38. S. Bandow, M. Takizawa, K. Hirahara, M. Yudasaka, and S. Iijima. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett., 2001, 337(1-3), 48-54. https://doi.org/10.1016/s0009-2614(01)00192-0

    Article  CAS  Google Scholar 

  39. Z. K. Tang, L. Zhang, N. Wang, X. X. Zhang, G. H. Wen, G. D. Li, J. N. Wang, C. T. Chan, and P. Sheng. Superconductivity in 4-angstrom single-walled carbon nanotubes. Science, 2001, 292(5526), 2462-2465. https://doi.org/10.1126/science.1060470

    Article  CAS  PubMed  Google Scholar 

  40. X. Zhao, Y. Ando, Y. Liu, M. Jinno, and T. Suzuki. Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys. Rev. Lett., 2003, 90(18), 187401. https://doi.org/10.1103/physrevlett.90.187401

    Article  PubMed  Google Scholar 

  41. L. Shi, P. Rohringer, K. Suenaga, Y. Niimi, J. Kotakoski, J. C. Meyer, H. Peterlik, M. Wanko, S. Cahangirov, A. Rubio, Z. J. Lapin, L. Novotny, P. Ayala, and T. Pichler. Confined linear carbon chains as a route to bulk carbyne. Nat. Mater., 2016, 15(6), 634-639. https://doi.org/10.1038/nmat4617

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Greshnyakov.

Ethics declarations

The author declares that he has no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 2, 106790.https://doi.org/10.26902/JSC_id106790

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greshnyakov, V.A. AB INITIO STUDY OF L4-, L3-6-, AND L3-4-6-DIAMOND-LIKE TUBULAR NANOSTRUCTURES. J Struct Chem 64, 324–334 (2023). https://doi.org/10.1134/S0022476623020166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623020166

Keywords

Navigation