Skip to main content
Log in

SYNTHESIS, CHARACTERIZATION AND X-RAY CRYSTAL STRUCTURE OF N′-(3,5-DIFLUORO-2- HYDROXYBENZYLIDENE)-4-METHYLBENZOHYDRAZIDE AND ITS OXIDOVANADIUM(V) COMPLEX WITH ANTIBACTERIAL ACTIVITY

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A new aroylhydrazone compound N′-(3,5-difluoro-2-hydroxybenzylidene)-4-methylbenzohydrazide (H2L) was prepared. The compound was characterized by IR, UV-Vis, 1H and 13C NMR spectra, as well as single crystal X-ray diffraction. Reaction of H2L with VO(acac)2 afforded a new oxidovanadium(V) complex [VO2L(OCH3)(CH3OH)], which was characterized by IR and UV-Vis spectra, and single crystal X-ray diffraction. The V atom in the complex is in octahedral coordination. The compounds were studied on their antibacterial activities on Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas fluorescens. The results indicated that both H2L and the oxidovanadium complex have interesting antibacterial activities. The complex has strong activity against B. subtilis (2.3 μg/mL) and medium activity against S. aureus (9.4 μg/mL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. P. H. O. Santiago, M. B. Santiago, C. H. G. Martins, and C. C. Gatto. Copper(II) and zinc(II) complexes with hydrazone: Synthesis, crystal structure, Hirshfeld surface and antibacterial activity. Inorg. Chim. Acta, 2020, 508, 119632. https://doi.org/10.1016/j.ica.2020.119632

    Article  CAS  Google Scholar 

  2. G.-H. Sheng, C.-F. Wang, S. Feng, X. Gao, and H.-L. Zhu. Characterization and crystal structure of a novel mononuclear cobalt(II) complex with hydrazone derived from protocatechuic acid. J. Struct. Chem., 2018, 59(1), 140-144. https://doi.org/10.1134/s0022476618010213

    Article  CAS  Google Scholar 

  3. D. Kuriakose and M. R. P. Kurup. Crystal structures and supramolecular architectures of ONO donor hydrazone and solvent exchangeable dioxidomolybdenum(VI) complexes derived from 3,5-diiodosalicyaldehyde-4-methoxybenzoylhydrazone: Hirshfeld surface analysis and interaction energy calculat. Polyhedron, 2019, 170, 749-761. https://doi.org/10.1016/j.poly.2019.06.041

    Article  CAS  Google Scholar 

  4. F. Zhi, N. Shao, Q. Wang, Y. Zhang, R. Wang, and Y. Yang. Crystal structures and antibacterial activity of hydrazone derivatives from 1H-indol-3-acetohydrazide. J. Struct. Chem., 2013, 54(1), 148-154. https://doi.org/10.1134/s0022476613010216

    Article  CAS  Google Scholar 

  5. R. Fekri, M. Salehi, A. Asadi, and M. Kubicki. Synthesis, characterization, anticancer and antibacterial evaluation of Schiff base ligands derived from hydrazone and their transition metal complexes. Inorg. Chim. Acta, 2019, 484, 245-254. https://doi.org/10.1016/j.ica.2018.09.022

    Article  CAS  Google Scholar 

  6. F. Marchetti, R. Pettinari, F. Verdicchio, A. Tombesi, S. Scuri, S. Xhafa, L. Olivieri, C. Pettinari, D. Choquesillo-Lazarte, A. García-García, A. Rodríguez-Diéguez, and A. Galindo. Role of hydrazone substituents in determining the nuclearity and antibacterial activity of Zn(II) complexes with pyrazolone-based hydrazones. Dalton Trans., 2022, 51(37), 14165-14181. https://doi.org/10.1039/d2dt02430f

    Article  CAS  PubMed  Google Scholar 

  7. S. S. Kumar, V. Sadasivan, S. S. Meena, R. S. Sreepriya, and S. Biju. Synthesis, structural characterization and biological studies of Ni(II), Cu(II) and Fe(III) complexes of hydrazone derived from 2-(2-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)hydrazinyl)benzoic acid. Inorg. Chim. Acta, 2022, 536, 120919. https://doi.org/10.1016/j.ica.2022.120919

    Article  CAS  Google Scholar 

  8. D. A. Megger, K. Rosowski, C. Radunsky, J. Kösters, B. Sitek, and J. Müller. Structurally related hydrazone-based metal complexes with different antitumor activities variably induce apoptotic cell death. Dalton Trans., 2017, 46(14), 4759-4767. https://doi.org/10.1039/c6dt04613d

    Article  CAS  PubMed  Google Scholar 

  9. N. R. Palepu, J. Richard Premkumar, A. K. Verma, K. Bhattacharjee, S. R. Joshi, S. Forbes, Y. Mozharivskyj, and K. Mohan Rao. Antibacterial, in vitro antitumor activity and structural studies of rhodium and iridium complexes featuring the two positional isomers of pyridine carbaldehyde picolinic hydrazone ligand. Arab. J. Chem., 2018, 11(5), 714-728. https://doi.org/10.1016/j.arabjc.2015.10.011

    Article  CAS  Google Scholar 

  10. F. Samy and M. Shebl. Ligational behavior of a new bis (bidentate NO) donor hydrazone towards Co(II), Ni(II), and Cu(II) ions: Preparation, spectral, thermal, biological, docking, and theoretical studies. Appl. Organomet. Chem., 2022, 36(12). https://doi.org/10.1002/aoc.6898

    Article  Google Scholar 

  11. A. Erguc, M. D. Altintop, O. Atli, B. Sever, G. Iscan, G. Gormus, and A. Ozdemir. Synthesis and biological evaluation of new quinoline-based thiazolyl hydrazone derivatives as potent antifungal and anticancer agents. Lett. Drug Des. Discovery, 2018, 15(2), 193-202. https://doi.org/10.2174/1570180814666171003145227

    Article  CAS  Google Scholar 

  12. S. Keskin, Ş. D. Doğan, M. G. Gündüz, I. Aleksic, S. Vojnovic, J. Lazic, and J. Nikodinovic-Runic. Indole-based hydrazone derivatives: Synthesis, cytotoxicity assessment, and molecular modeling studies. J. Mol. Struct., 2022, 1270, 133936. https://doi.org/10.1016/j.molstruc.2022.133936

    Article  CAS  Google Scholar 

  13. D. Osmaniye, I. Ahmad, B. N. Sağlık, S. Levent, H. M. Patel, Y. Ozkay, and Z. A. Kaplancıklı. Design, synthesis and molecular docking and ADME studies of novel hydrazone derivatives for AChE inhibitory, BBB permeability and antioxidant effects. J. Biomol. Struct. Dyn., 2022, 1-17. https://doi.org/10.1080/07391102.2022.2139762

    Article  PubMed  Google Scholar 

  14. S. Kumar, J. Devi, and V. D. Ghule. Synthesis, spectral analysis, DFT-assisted studies, in vitro antioxidant and antimicrobial activity of transition metal complexes of hydrazone ligands derived from 4-nitrocinnemaldehyde. Res. Chem. Intermed., 2022, 48(8), 3497-3525. https://doi.org/10.1007/s11164-022-04769-8

    Article  CAS  Google Scholar 

  15. N. N. Koopaei, M. Shademani, N. S. Yazdi, R. Tahmasvand, M. Dehbid, M. N. Koopaei, H. Azizian, Z. Mousavi, A. Almasirad, and M. Salimi. Design and synthesis of novel ureido and thioureido conjugated hydrazone derivatives with potent anticancer activity. BMC Chem., 2022, 16(1), 81. https://doi.org/10.1186/s13065-022-00873-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Tasneem, K. A. Sheikh, M. Naematullah, M. Mumtaz Alam, F. Khan, M. Garg, M. Amir, M. Akhter, S. Amin, A. Haque, and M. Shaquiquzzaman. Synthesis, biological evaluation and docking studies of methylene bearing cyanopyrimidine derivatives possessing a hydrazone moiety as potent Lysine specific demethylase-1 (LSD1) inhibitors: A promising anticancer agents. Bioorg. Chem., 2022, 126, 105885. https://doi.org/10.1016/j.bioorg.2022.105885

    Article  CAS  PubMed  Google Scholar 

  17. J. Qi, Y. Zheng, B. Li, L. Wei, J. Li, X. Xu, S. Zhao, X. Zheng, and Y. Wang. Mechanism of vitamin B6 benzoyl hydrazone platinum(II) complexes overcomes multidrug resistance in lung cancer. Eur. J. Med. Chem., 2022, 237, 114415. https://doi.org/10.1016/j.ejmech.2022.114415

    Article  CAS  PubMed  Google Scholar 

  18. D. Dey, G. Kaur, A. Ranjani, L. Gayathri, P. Chakraborty, J. Adhikary, J. Pasan, D. Dhanasekaran, A. R. Choudhury, M. A. Akbarsha, N. Kole, and B. Biswas. A trinuclear zinc–Schiff base complex: Biocatalytic activity and cytotoxicity. Eur. J. Inorg. Chem., 2014, 2014(21), 3350-3358. https://doi.org/10.1002/ejic.201402158

    Article  CAS  Google Scholar 

  19. A. P. Vieira, C. A. Wegermann, and A. M. Da Costa Ferreira. Comparative studies of Schiff base-copper(II) and zinc(II) complexes regarding their DNA binding ability and cytotoxicity against sarcoma cells. New J. Chem., 2018, 42(15), 13169-13179. https://doi.org/10.1039/c7nj04799a

    Article  CAS  Google Scholar 

  20. M. Zhang, D.-M. Xian, H.-H. Li, J.-C. Zhang, and Z.-L. You. Synthesis and structures of halo-substituted aroylhydrazones with antimicrobial activity. Aust. J. Chem., 2012, 65(4), 343. https://doi.org/10.1071/ch11424

    Article  CAS  Google Scholar 

  21. L. Shi, H.-M. Ge, S.-H. Tan, H.-Q. Li, Y.-C. Song, H.-L. Zhu, and R.-X. Tan. Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde. Eur. J. Med. Chem., 2007, 42(4), 558-564. https://doi.org/10.1016/j.ejmech.2006.11.010

    Article  CAS  PubMed  Google Scholar 

  22. N. P. Rai, V. K. Narayanaswamy, T. Govender, B. K. Manuprasad, S. Shashikanth, and P. N. Arunachalam. Design, synthesis, characterization, and antibacterial activity of {5-chloro-2-[(3-substitutedphenyl-1,2,4-oxadiazol-5-yl)-methoxy]-phenyl}-(phenyl)-methanones. Eur. J. Med. Chem., 2010, 45(6), 2677-2682. https://doi.org/10.1016/j.ejmech.2010.02.021

    Article  CAS  PubMed  Google Scholar 

  23. M. R. Maurya, A. A. Khan, A. Azam, S. Ranjan, N. Mondal, A. Kumar, F. Avecilla, and J. C. Pessoa. Vanadium complexes having [VIVO]2+ and [VVO2]+ cores with binucleating dibasic tetradentate ligands: Synthesis, characterization, catalytic and antiamoebic activities. Dalton Trans., 2010, 39(5), 1345-1360. https://doi.org/10.1039/b915752b

    Article  CAS  PubMed  Google Scholar 

  24. L.-H. Wang, X.-Y. Qiu, and S.-J. Liu. Synthesis, characterization and crystal structures of copper(II), zinc(II) and vanadium(V) complexes, derived from 3-methyl-N-(1-(pyridin-2-yl)ethylidene)benzohydrazide, with antibacterial activity. J. Coord. Chem., 2019, 72(5-7), 962-971. https://doi.org/10.1080/00958972.2019.1590561

    Article  CAS  Google Scholar 

  25. G.-H. Sheng, X. Han, Z. You, H.-H. Li, and H.-L. Zhu. Synthesis, crystal structures, and biological activity of oxovanadium(V) complexes with similar tridentate hydrazone ligands. J. Coord. Chem., 2014, 67(10), 1760-1770. https://doi.org/10.1080/00958972.2014.916795

    Article  CAS  Google Scholar 

  26. Z. H. Chohan, S. H. Sumrra, M. H. Youssoufi, and T. B. Hadda. Metal based biologically active compounds: Design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-derived Schiff bases and their oxovanadium(IV) complexes. Eur. J. Med. Chem., 2010, 45(7), 2739-2747. https://doi.org/10.1016/j.ejmech.2010.02.053

    Article  CAS  PubMed  Google Scholar 

  27. O. Taheri, M. Behzad, A. Ghaffari, M. Kubicki, G. Dutkiewicz, A. Bezaatpour, H. Nazari, A. Khaleghian, A. Mohammadi, and M. Salehi. Synthesis, crystal structures and antibacterial studies of oxidovanadium(IV) complexes of salen-type Schiff base ligands derived from meso-1,2-diphenyl-1,2-ethylenediamine. Transition Met. Chem., 2014, 39(2), 253-259. https://doi.org/10.1007/s11243-014-9798-9

    Article  CAS  Google Scholar 

  28. M. R. Maurya, S. Khurana, W. Zhang, and D. Rehder. Biomimetic oxo-, dioxo- and oxo-peroxo-hydrazonato-vanaium(IV/V) complexes. J. Chem. Soc., Dalton Trans., 2002, (15), 3015. https://doi.org/10.1039/b202852m

    Article  Google Scholar 

  29. C. Huang, Z. Zhang, M. Ding, J. Li, J. Ye, S. S. Leonard, H.-M. Shen, L. Butterworth, Y. Lu, M. Costa, Y. Rojanasakul, V. Castranova, V. Vallyathan, and X. Shi. Vanadate induces p53 transactivation through hydrogen peroxide and causes apoptosis. J. Biol. Chem., 2000, 275(42), 32516-32522. https://doi.org/10.1074/jbc.m005366200

    Article  CAS  PubMed  Google Scholar 

  30. SMART (Version 5.625) and SAINT (Version 6.01). Madison, Wisconsin, USA: Bruker AXS Inc., 2007.

  31. G. M. Sheldrick. SADABS: Program for empirical absorption correction of area detector. Göttingen, Germany: University of Göttingen, 1996.

  32. G. M. Sheldrick. SHELXTL V5.1: Software reference manual. Madison, Wisconsin, USA: Bruker AXS Inc., 1997.

  33. J. Meletiadis, J. F. G. M. Meis, J. W. Mouton, J. P. Donnelly, and P. E. Verweij. Comparison of NCCLS and 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) methods of in vitro susceptibility testing of filamentous fungi and development of a new simplified method. J. Clin. Microbiol., 2000, 38(8), 2949-2954. https://doi.org/10.1128/jcm.38.8.2949-2954.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. Sarkar and S. Pal. Dioxovanadium(V) complexes with N,N,O-donor monoanionic ligands: Synthesis, structure and properties. Polyhedron, 2007, 26(6), 1205-1210. https://doi.org/10.1016/j.poly.2006.10.012

    Article  CAS  Google Scholar 

  35. Y. M. Cui, Y. Q. Wang, X. X. Su, H. Huang, and P. Zhang. Synthesis, X-ray crystal structure, and catalytic epoxidation property of an oxovanadium(V) complex with hydrazone and ethyl maltol ligands. J. Struct. Chem., 2019, 60(8), 1299-1305. https://doi.org/10.1134/s0022476619080092

    Article  CAS  Google Scholar 

  36. H. Hosseini Monfared, S. Kheirabadi, N. Asghari Lalami, and P. Mayer. Dioxo- and oxovanadium(V) complexes of biomimetic hydrazone ONO and NNS donor ligands: Synthesis, crystal structure and catalytic reactivity. Polyhedron, 2011, 30(8), 1375-1384. https://doi.org/10.1016/j.poly.2011.02.005

    Article  CAS  Google Scholar 

  37. Y. Zhang, T. Yang, B.-Y. Zheng, M.-Y. Liu, and N. Xing. Synthesis, crystal structures of oxovanadium(V) complexes with hydrazone ligands and their catalytic performance for the styrene oxidation. Polyhedron, 2017, 121, 123-129. https://doi.org/10.1016/j.poly.2016.09.060

    Article  CAS  Google Scholar 

  38. Y. Li, L. Xu, M. Duan, J. Wu, Y. Wang, K. Dong, M. Han, and Z. You. An acetohydroxamate-coordinated oxidovanadium(V) complex derived from pyridinohydrazone ligand with urease inhibitory activity. Inorg. Chem. Commun., 2019, 105, 212-216. https://doi.org/10.1016/j.inoche.2019.05.011

    Article  CAS  Google Scholar 

  39. S. Guo, N. Sun, Y. Ding, A. Li, Y. Jiang, W. Zhai, Z. Li, D. Qu, and Z. You. Syntheses, characterization, and crystal structures of two oxovanadium(V) complexes with insulin-like activity. Z. Anorg. Allg. Chem., 2018, 644(19), 1172-1176. https://doi.org/10.1002/zaac.201800060

    Article  CAS  Google Scholar 

  40. C.-L. Zhang, X.-Y. Qiu, and S.-J. Liu. Vanadium(V) complexes with bromo-substituted hydrazones: synthesis, characterization, X-ray crystal structures and antimicrobial activity. Acta Chim. Slov., 2019, 66(3), 719-725. https://doi.org/10.17344/acsi.2019.5241

    Article  CAS  Google Scholar 

  41. L.-Y. He, X.-Y. Qiu, J.-Y. Cheng, S.-J. Liu, and S.-M. Wu. Synthesis, characterization and crystal structures of vanadium(V) complexes derived from halido-substituted tridentate hydrazone compounds with antimicrobial activity. Polyhedron, 2018, 156, 105-110. https://doi.org/10.1016/j.poly.2018.09.017

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Ningbo Public Welfare Funds (Project No. 2021S142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. -Y. Qiu.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 2, 106492.https://doi.org/10.26902/JSC_id106492

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Qiu, X.Y., Zheng, Z.X. et al. SYNTHESIS, CHARACTERIZATION AND X-RAY CRYSTAL STRUCTURE OF N′-(3,5-DIFLUORO-2- HYDROXYBENZYLIDENE)-4-METHYLBENZOHYDRAZIDE AND ITS OXIDOVANADIUM(V) COMPLEX WITH ANTIBACTERIAL ACTIVITY. J Struct Chem 64, 314–323 (2023). https://doi.org/10.1134/S0022476623020154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623020154

Keywords

Navigation