Skip to main content
Log in

SYNTHESIS, CRYSTAL STRUCTURE, SUPRAMOLECULAR ASSEMBLY EXPLORATION BY HIRSHFELD SURFACE ANALYSIS AND COMPUTATIONAL STUDY OF 6-BROMO-2-OXO- 2H-CHROMENE-3-CARBONITRILE (BOCC)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

It has been found that CF3COOH catalyzes the Knoevenagel condensation reaction of 5-bromo-2-hydroxybenzaldehyde and ethyl cyanoacetate. Consequently, the 6-bromo-2-oxo-2H-chromene-3-carbonitrile (BOCC) compound has been synthesized. The structure was proved by single crystal X-rays diffraction analysis. The asymmetric unit contained two identical molecules A and B which are different with respect to crystallography. The crystal packing is mainly stabilized by C–H⋯N and C–H⋯O bonding which is further stabilized by C–N⋯π and off-set π⋯π stacking interactions. Hirshfeld surface analysis is employed for the further exploration of the intermolecular interactions. Enrichment ratio is computed for the interatomic contacts to find the tendency of the contacts to form the crystal packing interactions. The void analysis is performed to predict the mechanical behaviour. Furthermore, the computational study is performed for finding the interaction energy between molecular pair by using B3LYP/6-31G(d,p) electron density model. The study inferred the role of various types of interaction energies in stabilizing the molecular pair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. K. N. Venugopala, V. Rashmi, and B. Odhav. Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res. Int., 2013, 2013, 1-14. https://doi.org/10.1155/2013/963248

    Article  CAS  Google Scholar 

  2. A. Vogel. J. Pharm., 1820, 6, 305-309.

  3. W. H. Perkin. VI. On the artificial production of coumarin and formation of its homologues. J. Chem. Soc., 1868, 21, 53-63. https://doi.org/10.1039/js8682100053

    Article  Google Scholar 

  4. J. A. Joule, K. Mills, and G. F. Smith. Heterocyclic Chemistry. CRC Press, 2020. https://doi.org/10.1201/9781003072850

    Book  Google Scholar 

  5. S. v. Kostanecki and A. Różycki. Ueber eine Bildungsweise von Chromonderivaten. Ber. Dtsch. Chem. Ges., 1901, 34(1), 102-109. https://doi.org/10.1002/cber.19010340119

    Article  Google Scholar 

  6. R. H. Vekariya and H. D. Patel. Recent advances in the synthesis of coumarin derivatives via knoevenagel condensation: A review. Synth. Commun., 2014, 44(19), 2756-2788. https://doi.org/10.1080/00397911.2014.926374

    Article  CAS  Google Scholar 

  7. C. S. Francisco, C. S. Francisco, A. F. Constantino, Á. C. Neto, and V. Lacerda. Synthetic methods applied in the preparation of coumarin-based compounds. Curr. Org. Chem., 2020, 23(24), 2722-2750. https://doi.org/10.2174/1385272823666191121150047

    Article  CAS  Google Scholar 

  8. M. Zhu, L. Ma, J. Wen, B. Dong, Y. Wang, Z. Wang, J. Zhou, G. Zhang, J. Wang, Y. Guo, C. Liang, S. Cen, and Y. Wang. Rational design and structure–activity relationship of coumarin derivatives effective on HIV-1 protease and partially on HIV-1 reverse transcriptase. Eur. J. Med. Chem., 2020, 186, 111900. https://doi.org/10.1016/j.ejmech.2019.111900

    Article  CAS  PubMed  Google Scholar 

  9. J.-W. Zhao, Z.-H. Wu, J.-W. Guo, M.-J. Huang, Y.-Z. You, H.-M. Liu, and L.-H. Huang. Synthesis and anti-gastric cancer activity evaluation of novel triazole nucleobase analogues containing steroidal/coumarin/quinoline moieties. Eur. J. Med. Chem., 2019, 181, 111520. https://doi.org/10.1016/j.ejmech.2019.07.023

    Article  CAS  PubMed  Google Scholar 

  10. M.-H. Lin, J.-S. Wang, Y.-C. Hsieh, J.-H. Zheng, and E.-C. Cho. NO2 functionalized coumarin derivatives suppress cancer progression and facilitate apoptotic cell death in KRAS mutant colon cancer. Chem. Biol. Interact., 2019, 309, 108708. https://doi.org/10.1016/j.cbi.2019.06.021

    Article  CAS  PubMed  Google Scholar 

  11. Y. Eker, E. Şenkuytu, Z. Ölçer, T. Yıldırım, and G. Y. Çiftçi. Novel coumarin cyclotriphosphazene derivatives: Synthesis, characterization, DNA binding analysis with automated biosensor and cytotoxicity. J. Mol. Struct., 2020, 1209, 127971. https://doi.org/10.1016/j.molstruc.2020.127971

    Article  CAS  Google Scholar 

  12. E. Y. Ahmed, N. A. Abdel Latif, M. F. El-Mansy, W. S. Elserwy, and O. M. Abdelhafez. VEGFR-2 inhibiting effect and molecular modeling of newly synthesized coumarin derivatives as anti-breast cancer agents. Bioorg. Med. Chem., 2020, 28(5), 115328. https://doi.org/10.1016/j.bmc.2020.115328

    Article  CAS  Google Scholar 

  13. S. N. Mangasuli, K. M. Hosamani, H. C. Devarajegowda, M. M. Kurjogi, and S. D. Joshi. Synthesis of coumarin-theophylline hybrids as a new class of anti-tubercular and anti-microbial agents. Eur. J. Med. Chem., 2018, 146, 747-756. https://doi.org/10.1016/j.ejmech.2018.01.025

    Article  CAS  PubMed  Google Scholar 

  14. H. M. Revankar, S. N. A. Bukhari, G. B. Kumar, and H.-L. Qin. Coumarins scaffolds as COX inhibitors. Bioorg. Chem., 2017, 71, 146-159. https://doi.org/10.1016/j.bioorg.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  15. L. K. A. M. Leal, A. H. Silva, and G. S. de B. Viana. Justicia pectoralis, a coumarin medicinal plant have potential for the development of antiasthmatic drugs? Rev. Bras. Farmacogn., 2017, 27(6), 794-802. https://doi.org/10.1016/j.bjp.2017.09.005

    Article  CAS  Google Scholar 

  16. M. Z. Hassan, H. Osman, M. A. Ali, and M. J. Ahsan. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123, 236-255. https://doi.org/10.1016/j.ejmech.2016.07.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. Pitaro, N. Croce, V. Gallo, A. Arienzo, G. Salvatore, and G. Antonini. Coumarin-induced hepatotoxicity: A narrative review. Molecules, 2022, 27(24), 9063. https://doi.org/10.3390/molecules27249063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. Sharifi-Rad, N. Cruz-Martins, P. López-Jornet, E. P.-F. Lopez, N. Harun, B. Yeskaliyeva, A. Beyatli, O. Sytar, S. Shaheen, F. Sharopov, Y. Taheri, A. O. Docea, D. Calina, and W. C. Cho. Natural coumarins: exploring the pharmacological complexity and underlying molecular mechanisms. Oxid. Med. Cell. Longevity, 2021, 2021, 1-19. https://doi.org/10.1155/2021/6492346

    Article  CAS  Google Scholar 

  19. J. J. McKinnon, A. S. Mitchell, and M. A. Spackman. Hirshfeld surfaces: A new tool for visualising and exploring molecular crystals. Chem. – Eur. J., 1998, 4(11), 2136-2141. https://doi.org/10.1002/(sici)1521-3765(19981102)4:11<2136::aid-chem2136>3.0.co;2-g

    Article  CAS  Google Scholar 

  20. J. J. McKinnon, M. A. Spackman, and A. S. Mitchell. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr., Sect. B: Struct. Sci., 2004, 60(6), 627-668. https://doi.org/10.1107/s0108768104020300

    Article  Google Scholar 

  21. A. E. Whitten, C. J. Radford, J. J. McKinnon, and M. A. Spackman. Dipole and quadrupole moments of molecules in crystals: A novel approach based on integration over Hirshfeld surfaces. J. Chem. Phys., 2006, 124(7), 074106. https://doi.org/10.1063/1.2173990

    Article  CAS  Google Scholar 

  22. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  23. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  24. A. L. Spek. Structure validation in chemical crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, 65(2), 148-155. https://doi.org/10.1107/s090744490804362x

    Article  CAS  Google Scholar 

  25. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, and P. A. Wood. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr., 2020, 53(1), 226-235. https://doi.org/10.1107/s1600576719014092

    Article  CAS  Google Scholar 

  26. C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward. The Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2016, 72(2), 171-179. https://doi.org/10.1107/s2052520616003954

    Article  CAS  Google Scholar 

  27. N. Abid-Jarraya, K. Khemakhem, H. Turki-Guermazi, S. Abid, N. Saffon, and S. Fery-Forgues. Solid-state fluorescence properties of small iminocoumarin derivatives and their analogues in the coumarin series. Dyes Pigm., 2016, 132, 177-184. https://doi.org/10.1016/j.dyepig.2016.04.039

    Article  CAS  Google Scholar 

  28. Y. V. Voznyi, M. O. Dekaprilevich, D. S. Yufit, and Y. T. Struchkov. Synthesis of 4-trifluoromethyl-7-hydroxycoumarin derivatives. Structure of 3-cyano-4-trifluoromethyl-7-acetoxycoumarin. Bull. Russ. Acad. Sci., Div. Chem. Sci., 1992, 41(6), 1072-1075. https://doi.org/10.1007/bf00866588

    Article  Google Scholar 

  29. S. S. Batsanov. Van der Waals radii of elements. Inorg. Mater., 2001, 37, 871-885. https://doi.org/10.1023/A:1011625728803

    Article  CAS  Google Scholar 

  30. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, and M. A. Spackman. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr., 2021, 54(3), 1006-1011. https://doi.org/10.1107/s1600576721002910

    Article  CAS  Google Scholar 

  31. M. A. Spackman and D. Jayatilaka. Hirshfeld surface analysis. CrystEngComm, 2009, 11(1), 19-32. https://doi.org/10.1039/b818330a

    Article  CAS  Google Scholar 

  32. L. Bejaoui, A. Brahmia, R. Marzouki, M. Dusek, V. Eigner, G. Serdaroğlu, S. Kaya, M. El Bour, and R. Ben Hassen. Synthesis, crystal structure, Hirshfeld surface analysis, spectroscopic, biological and first-principles studies of novel aminocoumarins. J. Mol. Struct., 2020, 1221, 128862. https://doi.org/10.1016/j.molstruc.2020.128862

    Article  CAS  Google Scholar 

  33. R. K. Askerov, M. Ashfaq, E. V. Chipinsky, V. K. Osmanov, M. N. Tahir, E. V. Baranov, G. K. Fukin, V. N. Khrustalev, R. H. Nazarov, G. N. Borisova, Z. V. Matsulevich, A. M. Maharramov, and A. V. Borisov. Synthesis, crystal structure, exploration of the supramolecular assembly through Hirshfeld surface analysis and bactericidal activity of the cadmium organometallic complexes obtained from the heterocyclic ligand. Results Chem., 2022, 4, 100600. https://doi.org/10.1016/j.rechem.2022.100600

    Article  CAS  Google Scholar 

  34. J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun., 2007, (37), 3814. https://doi.org/10.1039/b704980c

    Article  Google Scholar 

  35. M. A. Shalaby, H. M. Al-Matar, A. M. Fahim, and S. A. Rizk. A new approach to chromeno[4,3-b]pyridine: Synthesis, X-ray, spectral investigations, Hirshfeld surface analysis, and computational studies. J. Phys. Chem. Solids, 2022, 170, 110933. https://doi.org/10.1016/j.jpcs.2022.110933

    Article  CAS  Google Scholar 

  36. M. Madni, M. N. Ahmed, M. Hafeez, M. Ashfaq, M. N. Tahir, D. M. Gil, B. Galmés, S. Hameed, and A. Frontera. Recurrent – stacking motifs in three new 4,5-dihydropyrazolyl-thiazole-coumarin hybrids: X-ray characterization, Hirshfeld surface analysis and DFT calculations. New J. Chem., 2020, 44(34), 14592-14603. https://doi.org/10.1039/d0nj02931a

    Article  CAS  Google Scholar 

  37. M. Madni, M. N. Ahmed, G. Abbasi, S. Hameed, M. A. A. Ibrahim, M. N. Tahir, M. Ashfaq, D. M. Gil, R. M. Gomila, and A. Frontera. Synthesis and X-ray characterization of 4,5-dihydropyrazolyl-thiazoles bearing a coumarin moiety: On the importance of antiparallel -stacking. ChemistrySelect, 2022, 7(36). https://doi.org/10.1002/slct.202202287

    Article  Google Scholar 

  38. M. J. Turner, J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Visualisation and characterisation of voids in crystalline materials. CrystEngComm, 2011, 13(6), 1804-1813. https://doi.org/10.1039/c0ce00683a

    Article  CAS  Google Scholar 

  39. K. S. Munawar, S. Ali, M. N. Tahir, N. Khalid, Q. Abbas, I. Z. Qureshi, S. Hussain, and M. Ashfaq. Synthesis, spectroscopic characterization, X-ray crystal structure, antimicrobial, DNA-binding, alkaline phosphatase and insulin-mimetic studies of oxidovanadium(IV) complexes of azomethine precursors. J. Coord. Chem., 2020, 73(16), 2275-2300. https://doi.org/10.1080/00958972.2020.1813282

    Article  CAS  Google Scholar 

  40. K. S. Munawar, S. Ali, S. Muhammad, M. Ashfaq, S. M. Abbas, M. N. Tahir, S. M. Siddeeg, and G. Ahmed. Synthesis, crystal structure, Hirshfeld surface analysis, DNA binding, optical and nonlinear optical properties of Schiff bases derived from o-aminophenol. J. Mol. Struct., 2023, 1274, 134427. https://doi.org/10.1016/j.molstruc.2022.134427

    Article  CAS  Google Scholar 

  41. K. Shahzad Munawar, S. Ali, M. Ashfaq, M. Nawaz Tahir, S. Muhammad, S. S. Alarfaji, G. Ahmed, and A. G. Al-Sehemi. Synthesis, characterization, crystal structure and computational study of third-order NLO properties of Schiff bases. ChemistrySelect, 2022, 7(43). https://doi.org/10.1002/slct.202203015

    Article  Google Scholar 

  42. M. J. Turner, S. Grabowsky, D. Jayatilaka, and M. A. Spackman. Accurate and efficient model energies for exploring intermolecular interactions in molecular crystals. J. Phys. Chem. Lett., 2014, 5(24), 4249-4255. https://doi.org/10.1021/jz502271c

    Article  CAS  PubMed  Google Scholar 

  43. C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ, 2017, 4(5), 575-587. https://doi.org/10.1107/s205225251700848x

    Article  CAS  Google Scholar 

  44. A. Ali, M. Ashfaq, Z. U. Din, M. Ibrahim, M. Khalid, M. A. Assiri, A. Riaz, M. N. Tahir, E. Rodrigues-Filho, M. Imran, and A. Kuznetsov. Synthesis, structural, and intriguing electronic properties of symmetrical bis-aryl-,-unsaturated ketone derivatives. ACS Omega, 2022, 7(43), 39294-39309. https://doi.org/10.1021/acsomega.2c05441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. C. Burudeghatta Sundaramurthy, C. P. Kesthur Nataraju, and L. N. Krishnappagowda. Design, synthesis, structural analysis and quantum chemical insight into the molecular structure of coumarin derivatives. Mol. Syst. Des. Eng., 2022, 7(2), 132-157. https://doi.org/10.1039/d1me00113b

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ashfaq.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 2, 106486.https://doi.org/10.26902/JSC_id106486

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurbanova, M., Ashfaq, M., Tahir, M.N. et al. SYNTHESIS, CRYSTAL STRUCTURE, SUPRAMOLECULAR ASSEMBLY EXPLORATION BY HIRSHFELD SURFACE ANALYSIS AND COMPUTATIONAL STUDY OF 6-BROMO-2-OXO- 2H-CHROMENE-3-CARBONITRILE (BOCC). J Struct Chem 64, 302–313 (2023). https://doi.org/10.1134/S0022476623020142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623020142

Keywords

Navigation