Skip to main content
Log in

REDUCTION PROPERTIES OF GERMANIUM DICHLORIDE WITH RESPECT TO THE REDOX-ACTIVE MONOIMINOACENAPHTENONE dpp-MIAN

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Reaction of germanium dichloride [GeCl2(dioxane)] with 2-(2,6-diisopropylphenyl-imino)acenaphthylene-1-one (dpp-MIAN) leads to the reduction of dpp-MIAN and subsequent formation of the dianion bis-dpp-MIAN double ligand. Depending on the solvent, different products are formed. For example, reaction in toluene and diethyl ether yields digermylene [{(bis-dpp-MIAN)Ge(II)}Ge(II)Cl2] (1) where the doubled ligand is bonded to the divalent germanium atom by oxygen atoms, while the GeCl2 species is coordinated by an oxygen atom. Complex 1 forms two polymorphs, depending on crystallization conditions. Crystallization from toluene yields the 1m polymorph in the P2(1)/c monoclinic modification, while crystallization in diethyl ether yields the 1o polymorph in the Pbca orthorhombic modification. Reduction of dpp-MIAN by germanium dichloride in tetrahydrofuran yields the [(bis-dpp-MIAN)2Ge(IV)] complex (2) containing tetravalent germanium. Compounds 1 (polymorphs 1m and 1o) and 2 are characterized by IR spectroscopy, NMR, and XRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. A. N. Lukoyanov, E. A. Ulivanova, D. A. Razborov, V. V. Khrizanforova, Y. H. Budnikova, S. G. Makarov, R. V. Rumyantcev, S. Y. Ketkov, and I. L. Fedushkin. One-electron reduction of 2-mono(2,6-diisopropylphenylimino)acenaphthene-1-one (dpp-mian). Chem. Eur. J., 2019, 25(15), 3858-3866. https://doi.org/10.1002/chem.201805427

    Article  CAS  PubMed  Google Scholar 

  2. N. J. Hill, I. Vargas-Baca, and A. H. Cowley. Recent developments in the coordination chemistry of bis(imino)acenaphthene (BIAN) ligands with s- and p-block elements. Dalton Trans., 2009, 240-253. https://doi.org/10.1039/b815079f

    Article  PubMed  Google Scholar 

  3. J. Bernauer, J. Pölker, and A. Jacobi von Wangelin. Redox-active BIAN-based diimine ligands in metal-catalyzed small molecule syntheses. ChemCatChem, 2022, 14, e2021011. https://doi.org/10.1002/cctc.2021011

    Article  PubMed  PubMed Central  Google Scholar 

  4. I. Mhaidat, S. Hamilakis, C. Kollia, A. Tsolomitis, and Z. Loizos. Structure, electric and photoinduced properties of 1-p-methoxyphenyliminoacenaphthen-2-one. Mat. Lett., 2006, 60, 147-149.

    Article  CAS  Google Scholar 

  5. A. A. Skatova, I. L. Fedushkin, O. V. Maslova, M. Hummert, and H. Schumann. Synthesis and structures of new conformationally rigid 1-aza-1,3-dienes of the acenaphthene series. Russ. Chem. Bull., 2007, 56(11), 2284-2289. https://doi.org/10.1007/s11172-007-0360-1

    Article  CAS  Google Scholar 

  6. B. M. Schmiege, M. J. Carney, B. L. Small, D. L. Gerlach, and J. A. Halfen. Alternatives to pyridinediimine ligands: Syntheses and structures of metal complexes supported by donor-modified -diimine ligands. Dalton Trans., 2007, 2547-2562. https://doi.org/10.1039/b702197f

    Article  PubMed  Google Scholar 

  7. V. Rosa, T. Avilés, G. Aullon, B. Covelo, and C. Lodeiro. A new bis(1-naphthylimino)acenaphthene compound and its Pd(II) and Zn(II) complexes: synthesis, characterization, solid-state structures and density functional theory studies on the syn and anti isomers. Inorg. Chem., 2008, 47, 7734-7744. https://doi.org/10.1021/ic800790u

    Article  CAS  PubMed  Google Scholar 

  8. B. L. Small, R. Rios, E. R. Fernandez, D. L. Gerlach, J. A. Halfen, and M. J. Carney. Oligomerization of ethylene using new tridentate iron catalysts bearing -diimine ligands with pendant S and P donors. Organometallics, 2010, 29, 6723-6731. https://doi.org/10.1021/om1007743

    Article  CAS  Google Scholar 

  9. B. Gao, W. Gao, Q. Wu, X. Luo, J. Zhang, Q. Su, and Y. Mu. Chromium complexes with acenaphthene imine derivative ligands synthesis and catalysis on diene polymerization. Organometallics, 2011, 30, 5480-5486. https://doi.org/10.1021/om200733e

    Article  CAS  Google Scholar 

  10. J. Kovach, M. Peralta, W. W. Brennessel, and W. D. Jones. Synthesis and X-ray crystallographic characterization of substituted aryl imines. J. Mol. Struct., 2011, 992, 33-38. https://doi.org/10.1016/j.molstruc.2011.02.027

    Article  CAS  Google Scholar 

  11. S. Anga, M. Paul, K. Naktode, R. K. Kottalanka, and T. K. Panda. Cobalt(II) and copper(I) complexes of rigid bidentate [N-(2,6-diisopropyl-phenyl)imino]acenapthenone ligand: synthesis and structural studies. Z. Anorg. Allg. Chem., 2012, 638(9), 1311-1315. https://doi.org/10.1002/zaac.201200189

    Article  CAS  Google Scholar 

  12. X. Tang, Y.-T. Huang, H. Liu, R.-Z. Liu, D.-S. Shen, N. Liu, and F.-S. Liu. -Hydroxyimine palladium complexes: Synthesis, molecular structure, and their activities towards the Suzukie–Miyaura cross-coupling reaction. J. Organomet. Chem., 2013, 729, 95-102. https://doi.org/10.1016/j.jorganchem.2013.01.018

    Article  CAS  Google Scholar 

  13. S. Anga, T. Pal, R. K. Kottalanka, M. Paul, and T. K. Panda. Synthesis and structures of dimeric zinc complexes supported by unsymmetrical rigid bidentate imino-acenapthenone ligand. Can. Chem. Trans., 2013, 1(2), 105-115. https://doi.org/10.13179/canchemtrans.2013.01.02.0019

    Article  Google Scholar 

  14. S. Anga, S. Das Gupta, S. Rej, B. S. Mallik, and T. K. Panda. Modelling of transition state in grignard reaction of rigid N-(aryl)imino-acenapthenone (Ar-BIAO): A combined experimental and computational study. Aust. J. Chem., 2014, 68(6), 931-938. https://doi.org/10.1071/CH14399

    Article  CAS  Google Scholar 

  15. S. J. Carrington, I. Chakraborty, and P. K. Mascharak. Exceptionally rapid CO release from a manganese(I) tricarbonyl complex derived from bis(4-chloro-phenylimino)acenaphthene upon exposure to visible light. Dalton Trans., 2015, 44, 13828. https://doi.org/10.1039/c5dt01007a

    Article  CAS  PubMed  Google Scholar 

  16. S. Anga, S. Rej, K. Naktode, T. Pal, and T. K. Panda. Syntheses and solid state structures of zinc(II) complexes with Bi-dentate N-(Aryl)imino-acenapthenone (Ar-BIAO) ligands. J. Chem. Sci., 2015, 127(1), 1-11. https://doi.org/10.1007/s12039-014-0756-z

    Article  CAS  Google Scholar 

  17. A. S. Hazari, A. Das, R. Ray, H. Agarwala, S. Maji, S. M. Mobin, and G. K. Lahiri. Tunable electrochemical and catalytic features of BIAN- and BIAO- derived ruthenium complexes. Inorg. Chem., 2015, 54, 4998-5012. https://doi.org/10.1021/acs.inorgchem.5b00615

    Article  CAS  PubMed  Google Scholar 

  18. D. A. Razborov, A. N. Lukoyanov, E. V. Baranov, and I. L. Fedushkin. Addition of phenylacetylene to a magnesium complex of monoiminoacenaphtheneone (dpp-mian). Dalton Trans., 2015, 44, 20532. https://doi.org/10.1039/c5dt03174e

    Article  CAS  PubMed  Google Scholar 

  19. D. A. Razborov, A. N. Lukoyanov, V. M. Makarov, M. A. Samsonov, and I. L. Fedushkin. Complexes of gallium(III), antimony(III), titanium(IV), and cobalt(II) with acenaphthenequinonimine. Russ. Chem. Bull., 2015, 64(10), 2377-2385. https://doi.org/10.1007/s11172-015-1166-1

    Article  CAS  Google Scholar 

  20. A. S. Hazari, R. Ray, Md A. Hoque, and G. K. Lahiri. Electronic structure and multicatalytic features of redox-active bis(arylimino)acenaphthene (BIAN)-derived ruthenium complexes. Inorg. Chem., 2016, 55, 8160-8173. https://doi.org/10.1021/acs.inorgchem.6b01280

    Article  CAS  PubMed  Google Scholar 

  21. J. Bhattacharjee, M. Sachdeva, I. Banerjee, and T. K. Panda. Zinc catalyzed guanylation reaction of amines with carbodiimides/isocyanate leading to guanidines/urea derivatives formation. J. Chem. Sci., 2016, 128(6), 875-881. https://doi.org/10.1007/s12039-016-1096-y

    Article  CAS  Google Scholar 

  22. D. A. Razborov, A. N. Lukoyanov, M. V. Moskalev, E. V. Baranov, and I. L. Fedyushkin. Gallium complexes with acenaphthene-1-imino-2-one: Synthesis and reactivity. Russ. J. Coord. Chem., 2018, 44, 380-387. https://doi.org/10.1134/S1070328418060040

    Article  CAS  Google Scholar 

  23. A. N. Lukoyanov, I. S. Fomenko, M. I. Gongola, L. S. Shulpina, N. S. Ikonnikov, G. B. Shulpin, S. Y. Ketkov, G. K. Fukin, R. V. Rumyantcev, A. S. Novikov, V. A. Nadolinny, M. N. Sokolov, and A. L. Gushchin. Novel oxidovanadium complexes with redox-active R-mian and R-bian ligands: synthesis, structure, redox and catalytic properties. Molecules, 2021, 26, 5706. https://doi.org/10.3390/molecules26185706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A. N. Lukoyanov, Yu. V. Zvereva, D. A. Parshina, A. V. Cherkasov, and S. Yu. Ketkov. Calcium complexes bearing dianionic or monoanionic iminoacenaphthen-1-one ligands: Synthesis, reactions with alkynes and catalysis of L-lactide polymerization. Eur. J. Inorg. Chem., 2022, 2022(7), e202200348. https://doi.org/10.1002/ejic.202200348

    Article  Google Scholar 

  25. V. A. Dodonov, O. A. Kushnerova, D. A. Razborov, E. V. Baranov, E. A. Ulivanova, A. N. Lukoyanov, and I. L. Fedushkin. Stannylenes based on neutral, anionic, and dianionic 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene. Russ. Chem. Bull., 2022, 71(2), 322-329. https://doi.org/10.1007/s11172-022-3414-5

    Article  CAS  Google Scholar 

  26. I. L. Fedushkin, N. M. Khvoinova, A. Y. Baurin, G. K. Fukin, V. K. Cherkasov, and M. P. Bubnov. Divalent germanium compound with a radical-anionic ligand: molecular structures of (dpp-BIAN)•–GeCl and its hydrochloration products [(dpp-BIAN)(H)2]•+[GeCl3]– and [{(dpp-BIAN)(H)2•+}2(Cl–)]+[GeCl3]– (dpp-BIAN = 1,2-bis{(2,6-diisopropylphenyl)imino}acenaphthene). Inorg. Chem., 2004, 43(24), 7807-7815. https://doi.org/10.1021/ic048801g

    Article  CAS  PubMed  Google Scholar 

  27. P. Rivière, A. Castel, J. Satgé, and D. Guyot. Cycloaddition of germylenes to 3,5-di-t-butyl orthoquinone. J. Org. Chem., 1986, 315(2), 157-164. https://doi.org/10.1016/0022-328X(86)80434-X

    Article  Google Scholar 

  28. APEX3: Bruker Molecular Analysis Research Tool, v. 2018.7-2. Madison, WI, USA: Bruker AXS Inc., 2018.

  29. SAINT: Data Reduction and Correction Program, v. 8.38A. Madison, WI, USA: Bruker AXS Inc., 2017.

  30. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr., 2015, 48, 3. https://doi.org/10.1107/S1600576714022985

    Article  CAS  Google Scholar 

  31. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  32. G. M. Sheldrick. SHELXTL, Version 6.14: Structure Determination Software Suite. Madison, WI, USA: Bruker AXS, 2003.

  33. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  34. G. M. Sheldrick. SADABS, v.2016/2: Bruker/Siemens Area Detector Absorption Correction Program. Madison, WI, USA: Bruker AXS Inc., 2016.

  35. A. L. Spek. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 9-18. https://doi.org/10.1107/s2053229614024929

    Article  CAS  Google Scholar 

  36. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision E.01. Wallingford, CT: Gaussian, Inc., 2013.

  37. Y. Zhao and D. G. Truhlar. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc., 2008, 120, 215-241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  38. N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer. Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can. J. Chem., 1992, 70, 560-571. https://doi.org/10.1139/v92-079

    Article  CAS  Google Scholar 

  39. C. Sosa, J. Andzelm, B. C. Elkin, E. Wimmer, K. D. Dobbs, and D. A. Dixon. A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds. J. Phys. Chem., 1992, 96, 6630-6636. https://doi.org/10.1021/j100195a022

    Article  CAS  Google Scholar 

  40. J. Böserle, G. Zhigulin, P. Štěpnička, F. Horký, M. Erben, R. Jambor, A. Růžička, S. Ketkov, and L. Dostál. Facile activation of alkynes with a boraguanidinato-stabilized germylene: a combined experimental and theoretical study. Dalton Trans., 2017, 46, 12339-12353. https://doi.org/10.1039/c7dt01950e

    Article  CAS  PubMed  Google Scholar 

  41. J. Böserle, G. Zhigulin, S. Ketkov, R. Jambor, A. Růžička, and L. Dostál. Diverse reactivity of a boraguanidinato germylene toward organic pseudohalides. Dalton Trans., 2018, 47, 14880-14883. https://doi.org/10.1039/c8dt03357a

    Article  CAS  PubMed  Google Scholar 

  42. A. E. Reed, L. A. Curtiss, and F. Weinhold. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev., 1988, 88, 899-926. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  43. A. D. Becke and K. E. Edgecombe. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys., 1990, 92, 5397-5403. https://doi.org/10.1063/1.458517

    Article  CAS  Google Scholar 

  44. A. Savin, B. Silvi, and F. Colonna. Topological analysis of the electron localization function applied to delocalized bonds. Can. J. Chem., 1996, 74, 1088-1096. https://doi.org/10.1139/v96-122.

    Article  CAS  Google Scholar 

  45. T. Lu and F. Chen. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem., 2012, 33, 580-592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  46. Y. V. Zefirov and P. M. Zorky. New applications of van der Waals radii in chemistry. Russ. Chem. Rev., 1995, 64(5), 415-428. https://doi.org/10.1070/rc1995v064n05abeh000157

    Article  Google Scholar 

Download references

Funding

This work was funded by the Russian Foundation for Basic Research (No.  20-03-00659) using equipment of the Collective Use Center “Analytical Center of IOMC RAS” within the project “Scientific Equipment for the Development of the Material and Technical Infrastructure of Common Use Centers” (identifier RF----2296.61321X0017, agreement No. 075-15-2021-670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Lukoyanov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 2, 106292.https://doi.org/10.26902/JSC_id106292

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukoyanov, A.N., Zvereva, Y.V., Zhigulin, G.Y. et al. REDUCTION PROPERTIES OF GERMANIUM DICHLORIDE WITH RESPECT TO THE REDOX-ACTIVE MONOIMINOACENAPHTENONE dpp-MIAN. J Struct Chem 64, 288–301 (2023). https://doi.org/10.1134/S0022476623020130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623020130

Keywords

Navigation