Skip to main content
Log in

SYNTHESIS AND CRYSTAL STRUCTURE OF TWO NEW TETRAFLUOROBORATE CRYSTALLOHYDRATES M(BF4)2·3H2O, M = Sr, Ba

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Crystals of two new tetrafluoroborate crystallohydrates M(BF4)2·3H2O (M = Sr, Ba) are prepared by the evaporation of aqueous solutions. The compounds are studied by single crystal XRD and IR spectroscopy. Sr(BF4)2·3H2O crystallizes in the tetragonal crystal system (a = 6.9638(4) Å, c = 18.1671(12) Å, space group P42/mnm); Ba(BF4)2·3H2O crystallizes in the orthorhombic crystal system (a = 7.1996(2) Å, b = 18.0823(5) Å, c = 7.1860(2) Å, space group C2221). Their crystal structure is formed by isolated BF4 tetrahedra and water molecules with alkaline earth metal atoms in between. When cooled to 100 K, Ba(BF4)2·3H2O undergoes a polymorphic transition to the monoclinic modification accompanied by pseudo-merohedral twinning of crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. M. Mutailipu, K. R. Poeppelmeier, and S. Pan. Borates: A rich source for optical materials. Chem. Rev., 2021, 121, 1130. https://doi.org/10.1021/acs.chemrev.0c00796.

    Article  CAS  PubMed  Google Scholar 

  2. and . Emergent deep-ultraviolet nonlinear optical candidates. Angew. Chem., Int. Ed., 2020, 59, 20302. https://doi.org/10.1002/anie.201913974

    Article  CAS  Google Scholar 

  3. H. Wu, H. Yu, Q. Bian, Z. Yang, S. Han, and S. Pan. Borate fluoride and fluoroborate in alkali-metal borate prepared by an open high-temperature solution method. Inorg. Chem., 2014, 53, 12686. https://doi.org/10.1021/ic502625b

    Article  CAS  PubMed  Google Scholar 

  4. B. Zhang, G. Shi, Z. Yang, F. Zhang, and S. Pan. Fluorooxoborates: beryllium-free deep-ultraviolet nonlinear optical materials without layered growth. Angew. Chem., Int. Ed., 2017, 56, 3916. https://doi.org/10.1002/anie.201700540

    Article  CAS  Google Scholar 

  5. M. Mutailipu, M. Zhang, B. Zhang, L. Wang, Z. Yang, X. Zhou, and S. Pan. SrB5O7F3 functionalized with [B5O9F3]chromophores: Accelerating the rational design of deep-ultraviolet nonlinear optical materials. Angew. Chem., Int Ed., 2018, 57, 6203. https://doi.org/10.1002/ange.201802058

    Article  Google Scholar 

  6. H. Li, H. Wu, X. Su, H. Yu, S. Pan, Z. Yang, Y. Lu, J. Han, and K. R. Poeppelmeier. Pb3B6O11F2: The first non-centrosymmetric lead borate fluoride with a large second harmonic generation response. J. Mater. Chem., C, 2014, 2, 1704. https://doi.org/10.1039/C3TC32002B

    Article  CAS  Google Scholar 

  7. W. Zhao, S. Pan, J. Han, J. Yao, Y. Yang, J. Li, M. Zhang, L. H. Zhang, and Y. Hang. Synthesis, crystal structure and optical properties of the new lead fluoride borate–Pb2BO3F. J. Solid State Chem., 2011, 184, 2849. https://doi.org/10.1016/j.jssc.2011.08.024

    Article  CAS  Google Scholar 

  8. S. G. Jantz, F. Pielnhofer, L. van Wüllen, R. Weihrich, M. J. Schäfer, and H. A. Höppe. The first alkaline-earth 2+fluorooxoborate Ba[B4O6F2] - characterisation and doping with Eu . Chem. – Eur. J., 2018, 24, 443. https://doi.org/10.1002/chem.201704324

    Article  CAS  PubMed  Google Scholar 

  9. P. H. Hsieh, C. E. Tsai, B. C. Chang, and K. H. Lii. High-temperature, high-pressure hydrothermal synthesis and characterization of an acentric borate fluoride: Ba2B5O9F0.5H2O. Inorg. Chem., 2018, 57, 7239. https://doi.org/10.1021/acs.inorgchem.8b00908

    Article  CAS  PubMed  Google Scholar 

  10. T. Bunič, G. Tavčar, E. Goreshnik, and B. Žemva. Strontium tetrafluoridoborate and barium tetrafluoridoborate. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2007, 63(9), i75/i76. https://doi.org/10.1107/s0108270107036864

    Article  Google Scholar 

  11. T. H. Jordan, B. Dickens, L. W. Schroeder, and W. E. Brown. The crystal structure of Ca(BF4)2. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1975, 31(3), 669-672. https://doi.org/10.1107/s0567740875003597

    Article  Google Scholar 

  12. S. Pawlenko. Studien über Tetrafluoroborate und Hydroxotrifluoroborate. I. Erdalkali-Tetrafluoroborate. Z. Anorg. Allg. Chem., 1962, 315, 136. https://doi.org/10.1002/ZAAC.19623150303

    Article  CAS  Google Scholar 

  13. J. D. Forero-Saboya, M. Lozinšek, and A. Ponrouch. Towards dry and contaminant free Ca(BF4)2-based electrolytes for Ca plating. J. Power Sources Adv., 2020, 6, 100032. https://doi.org/10.1016/j.powera.2020.100032

    Article  Google Scholar 

  14. C. A. Wamser. Hydrolysis of fluoboric acid in aqueous solution. J. Am. Chem. Soc., 1948, 70, 1209. https://doi.org/10.1021/ja01183a101

    Article  CAS  Google Scholar 

  15. S. Pawlenko. Studien über Tetrafluoroborate und Hydroxotrifluoroborate. II. Hydroxotrifluoroborate der Alkali- und Erdalkalimetalle. Z. Anorg. Allg. Chem., 1962, 315, 147. https://doi.org/10.1002/zaac.19623150304

    Article  CAS  Google Scholar 

  16. Rukovodstvo po neorganicheskomu sintezu (Handbook of Preparative Inorganic Chemistry) / Ed. G. Brauer. Moscow: Mir, 1985, 261. [In Russian]

  17. CrysAlisPRO Software System, Version 1.171.41.104a. Oxford, UK: Rigaku Oxford Diffraction, 2021.

  18. L. Palatinus and G. Chapuis. SUPERFLIP - A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr., 2007, 40, 786. https://doi.org/10.1107/S0021889807029238

    Article  CAS  Google Scholar 

  19. V. Petříček, M. Dušek, and L. Palatinus. Crystallographic Computing System JANA2006: General Features. Z. Kristallogr. Cryst. Mater., 2014, 229(5), 345-352. https://doi.org/10.1515/zkri-2014-1737.

    Article  CAS  Google Scholar 

  20. A. L. Spek. checkCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr., Sect. E: Crystallogr. Commun., 2020, 76(1), 1-11. https://doi.org/10.1107/s2056989019016244

    Article  CAS  Google Scholar 

  21. J. M. Alia and H. G. M. Edwards. FT-Raman study of ionic interactions in lithium and silver tetrafluoroborate solutions in acrylonitrile. J. Solution Chem., 2000, 29(9), 781. https://doi.org/10.1023/A:1005144113352

    Article  CAS  Google Scholar 

  22. J.-B. Brubach, A. Mermet, A. Filabozzi, A. Gershel, and P. Roy. Signatures of the hydrogen bonding in the infrared bands of water. J. Chem. Phys., 2005, 122, 184509. http://dx.doi.org/10.1063/1.1894929

    Article  CAS  PubMed  Google Scholar 

  23. P. A. Pieniazek and J. Stangret. Hydration of tetraethylammonium tetrafluoroborate derived from FTIR spectroscopy. Vib. Spectrosc., 2005, 39(1), 81. https://doi.org/10.1016/j.vibspec.2004.11.004

    Article  CAS  Google Scholar 

  24. Y. Hase. Quantum chemical calculations and vibrational spectra of the hydroxytrifluoroborate anion. Spectrosc. Lett., 2003, 36(3), 227. https://doi.org/10.1081/SL-120024355

    Article  CAS  Google Scholar 

  25. S. K. Filatov. Vysokotemperaturnaya kristallokhimiya (High-Temperature Crystal Chemistry). Leningrad, Russia: Nedra, 1990. [In Russian]

  26. H. Kabbour and L. Cario. Ae2Sb2X4F2 (Ae = Sr, Ba): New members of the homologous series Ae2M1+nX3+nF2 designed from rock salt and fluorite 2D building blocks. Inorg. Chem., 2006, 45(6), 2713. https://doi.org/10.1021/ic051969x

    Article  CAS  PubMed  Google Scholar 

  27. S. N. Volkov, V. A. Yukhno, R. S. Bubnova, S. M. Aksenov, A. V. Povolotskiy, D. O. Charkin, M. Yu. Arsentev, V. L. Ugolkov, and M. G. Krzhizhanovskaya. Resolving the problems of the past: Reinvestigation of the structure of acentric deep UV BaB8O13 borate. Cryst. Growth. Des., 2022, 22, 6267. https://doi.org/10.1021/acs.cgd.2c00850

    Article  CAS  Google Scholar 

  28. L. Hetmańczyk, J. Hetmańczyk, E. Mikuli, A. Migdał-Mikuli, W. Nitek, K. Hołderna-Natkaniec, and I. Natkaniec. Crystal structure of two [Ba(H2O)3](ClO4)2 phases and H2O ligands reorientational motions studied by X-ray single crystal, inelastic and quasielastic incoherent neutron scattering and proton magnetic resonance. J. Phys. Chem. Solids, 2013, 74, 1775. https://doi.org/10.1016/j.jpcs.2013.07.007

    Article  CAS  Google Scholar 

  29. E. Hennings, H. Schmidt, and W. Voigt. Crystal structures of Sr(ClO4)23H2O, Sr(ClO4)24H2O and Sr(ClO4)29H2O. Acta Crystallogr., Sect. E: Struct. Rep. Online, 2014, 70(12), 510-514. https://doi.org/10.1107/s1600536814024726

    Article  CAS  Google Scholar 

  30. H. Henning, J. M. Bauchert, M. Conrad, and Th. Schleid. Crystal structures and thermal decomposition of permanganates AE[MnO4]2·nH2O with the heavy alkaline earth elements (AE = Ca, Sr and Ba). Z. Naturforsch., B: J. Chem. Sci., 2017, 72(8), 555. https://doi.org/10.1515/znb-2017-0028

    Article  CAS  Google Scholar 

  31. G. Brunton. The crystal structure of KBF4. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, 25(10), 2161/2162. https://doi.org/10.1107/s0567740869005309

    Article  Google Scholar 

  32. L. J. Klinkenberg. The crystal structure of NaOHBF3 and of the alkali fluoborates and TlBF4. Recl. Trav. Chim. Pays-Bas, 1937, 56(1), 36. https://doi.org/10.1002/recl.19370560105

    Article  CAS  Google Scholar 

Download references

Funding

The study was funded by the Russian Foundation for Basic Research (project No. 20-03-00702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Aksenov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 2, 106035.https://doi.org/10.26902/JSC_id106035

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charkin, D.O., Volkov, S.N., Manelis, L.S. et al. SYNTHESIS AND CRYSTAL STRUCTURE OF TWO NEW TETRAFLUOROBORATE CRYSTALLOHYDRATES M(BF4)2·3H2O, M = Sr, Ba. J Struct Chem 64, 253–261 (2023). https://doi.org/10.1134/S0022476623020099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623020099

Keywords

Navigation