Skip to main content
Log in

MOLECULAR DYNAMICS SIMULATION OF THE DEFORMATION BEHAVIOR OF THE GRAPHENE/Al COMPOSITE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

We present the results of the molecular dynamics simulation of the deformation behavior of the graphene/Al composite. Morse potential parameters are considered and selected to describe interactions in the graphene/Al system. It is shown that the keeping at room temperature followed by the hydrostatic compression at 300 K and 600 K enables the preparation of strong composite materials. It is found that the graphene/Al composite formed at 600 K has the maximum strength limit and also demonstrates a high plasticity. It is revealed that due to a weak binding energy between graphene and Al during the deformation treatment, Al nanoparticles tend to coagulate. On the one hand, the occurrence of aluminum nanoparticles enhances the plasticity of the composite, but on the other hand, the composite is further destructed just on these nanoparticles. The obtained results contribute to a better understanding of the formation processes of composites based on crumpled graphene and Al nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. J. Sun, Z. Bai, Z. Huang, Z. Zhang. Preparation of CdSe/RGO-GO composites with the high performance of adsorption and degradation. Lett. Mater., 2020, 10(2), 200-205. https://doi.org/10.22226/2410-3535-2020-2-200-205

    Article  Google Scholar 

  2. O. Kurapova, I. Smirnov, E. Solovyeva, I. Archakov, and V. Konakov. The effect of reduced graphene oxide (rGO) and thermally exfoliated graphite (TEFG) on the mechanical properties of “nickel-graphene” composites. Lett. Mater., 2020, 10(2), 164-169. https://doi.org/10.22226/2410-3535-2020-2-164-169

    Article  Google Scholar 

  3. L. Safina, J. Baimova, K. Krylova, R. Murzaev, and R. Mulyukov. Simulation of metal-graphene composites by molecular dynamics: A review. Lett. Mater., 2020, 10(3), 351-360. https://doi.org/10.22226/2410-3535-2020-3-351-360

    Article  Google Scholar 

  4. R. Khisamov, K. Nazarov, P. Trinh, A. Nazarov, D. Phuong, and R. Mulyukov. Field electron emission from a copper-based composite reinforced with carbon nanotubes. Lett. Mater., 2019, 9(4s), 566-570. https://doi.org/10.22226/2410-3535-2019-4-566-570

    Article  Google Scholar 

  5. X. Zhao, J. Tang, F. Yu, and N. Ye. Preparation of graphene nanoplatelets reinforcing copper matrix composites by electrochemical deposition. J. Alloys Compd., 2018, 766, 266-273. https://doi.org/10.1016/j.jallcom.2018.06.309

    Article  CAS  Google Scholar 

  6. Y. J. Mai, F. X. Chen, W. Q. Lian, L. Y. Zhang, C. S. Liu, and X. H. Jie. Preparation and tribological behavior of copper matrix composites reinforced with nickel nanoparticles anchored graphene nanosheets. J. Alloys Compd., 2018, 756, 1-7. https://doi.org/10.1016/j.jallcom.2018.05.019

    Article  CAS  Google Scholar 

  7. K. Chu, X. Wang, F. Wang, Y. Li, D. Huang, H. Liu, W. Ma, F. Liu, and H. Zhang. Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network. Carbon, 2018, 127, 102-112. https://doi.org/10.1016/j.carbon.2017.10.099

    Article  CAS  Google Scholar 

  8. Z. Shi, J. Sheng, Z. Yang, Z. Liu, S. Chen, M. Wang, L. Wang, and W. Fei. Facile synthesis of high-performance carbon nanosheet/Cu composites from copper formate. Carbon, 2020, 165, 349-357. https://doi.org/10.1016/j.carbon.2020.04.061

    Article  CAS  Google Scholar 

  9. S. Feng, Q. Guo, Z. Li, G. Fan, Z. Li, D.-B. Xiong, Y. Su, Z. Tan, J. Zhang, and D. Zhang. Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars. Acta Mater., 2017, 125, 98-108. https://doi.org/10.1016/j.actamat.2016.11.043

    Article  CAS  Google Scholar 

  10. S. E. Shin, H. J. Choi, J. H. Shin, and D. H. Bae. Strengthening behavior of few-layered graphene/aluminum composites. Carbon, 2015, 82, 143-151. https://doi.org/10.1016/j.carbon.2014.10.044

    Article  CAS  Google Scholar 

  11. L. L. Safina and J. A. Baimova. Molecular dynamics simulation of fabrication of Ni-graphene composite: Temperature effect. Micro Nano Lett., 2020, 15(3), 176-180. https://doi.org/10.1049/mnl.2019.0414

    Article  CAS  Google Scholar 

  12. G. Yasin, M. A. Khan, M. Arif, M. Shakeel, T. M. Hassan, W. Q. Khan, R. M. Korai, Z. Abbas, and Y. Zuo. Synthesis of spheres-like Ni/graphene nanocomposite as an efficient anti-corrosive coating; effect of graphene content on its morphology and mechanical properties. J. Alloys Compd., 2018, 755, 79-88. https://doi.org/10.1016/j.jallcom.2018.04.321

    Article  CAS  Google Scholar 

  13. K. Fu, X. Zhang, C. Shi, E. Liu, F. He, J. Li, N. Zhao, and C. He. An approach for fabricating Ni@graphene reinforced nickel matrix composites with enhanced mechanical properties. Mater. Sci. Eng. A, 2018, 715, 108-116. https://doi.org/10.1016/j.msea.2017.12.101

    Article  CAS  Google Scholar 

  14. J. Uddin, M. I. Baskes, S. G. Srinivasan, T. R. Cundari, and A. K. Wilson. Modified embedded atom method study of the mechanical properties of carbon nanotube reinforced nickel composites. Phys. Rev. B, 2010, 81(10), 104103. https://doi.org/10.1103/physrevb.81.104103

    Article  Google Scholar 

  15. Y. Shen, S. Lu, W. Xu, A. Lv, Z. Wang, H. Wang, G. Liu, and Y. Zhang. Fabrication of composite material with Pd nanoparticles and graphene on nickel foam for its excellent electrocatalytic performance. Electrocatalysis, 2020, 11(5), 522-535. https://doi.org/10.1007/s12678-020-00611-0

    Article  CAS  Google Scholar 

  16. D. Kuang, L. Xu, L. Liu, W. Hu, and Y. Wu. Graphene–nickel composites. Appl. Surf. Sci., 2013, 273, 484-490. https://doi.org/10.1016/j.apsusc.2013.02.066

    Article  CAS  Google Scholar 

  17. L. Xu, R. Wang, M. Gen, L. Lu, and G. Han. Preparation and properties of graphene/nickel composite coating based on textured surface of aluminum alloy. Materials, 2019, 12(19), 3240. https://doi.org/10.3390/ma12193240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S. J. An, Y. Zhu, S. H. Lee, M. D. Stoller, T. Emilsson, S. Park, A. Velamakanni, J. An, and R. S. Ruoff. Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J. Phys. Chem. Lett., 2010, 1(8), 1259-1263. https://doi.org/10.1021/jz100080c

    Article  CAS  Google Scholar 

  19. K. S. Jyotheender and C. Srivastava. Ni-graphene oxide composite coatings: Optimum graphene oxide for enhanced corrosion resistance. Composites, Part B, 2019, 175, 107145. https://doi.org/10.1016/j.compositesb.2019.107145

    Article  CAS  Google Scholar 

  20. A. M. Díez-Pascual and A. Rahdar. Graphene-based polymer composites for flexible electronic applications. Micromachines, 2022, 13(7), 1123. https://doi.org/10.3390/mi13071123

    Article  PubMed  PubMed Central  Google Scholar 

  21. B. K. Choi, G. H. Yoon, and S. Lee. Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading. Composites, Part B, 2016, 91, 119-125. https://doi.org/10.1016/j.compositesb.2015.12.031

    Article  CAS  Google Scholar 

  22. Z. Qiu, Z. Zhang, Y. Xiong, X. Luo, Z. Li, K. Zheng, and W. Hu. Size effects of graphene sheets on the strengthening mechanism of Al-graphene composites: A molecular dynamics study. Appl. Surf. Sci., 2022, 596, 153546. https://doi.org/10.1016/j.apsusc.2022.153546

    Article  CAS  Google Scholar 

  23. B. Hou, P. Liu, A. Wang, and J. Xie. Interface optimization strategy for enhancing the mechanical and thermal properties of aligned graphene/Al composite. J. Alloys Compd., 2022, 900, 163555. https://doi.org/10.1016/j.jallcom.2021.163555

    Article  CAS  Google Scholar 

  24. Y. Sun, L. Zhou, Y. Han, and L. Cui. Effect of graphene bending in dynamic compounding process on the thermal conductivity of graphene and its composites. Mater. Des., 2022, 215, 110498. https://doi.org/10.1016/j.matdes.2022.110498

    Article  CAS  Google Scholar 

  25. Z. Yang, Z. Guo, C. Yuan, and X. Bai. Tribological behaviors of composites reinforced by different functionalized carbon nanotube using molecular dynamic simulation. Wear, 2021, 476, 203669. https://doi.org/10.1016/j.wear.2021.203669

    Article  CAS  Google Scholar 

  26. Y. Yang, M. Liu, J. Du, W. Zhang, S. Zhou, W. Ren, Q. Zhou, and L. Shi. Construction of graphene network in Ni matrix composites: A molecular dynamics study of densification process. Carbon, 2022, 191, 55-66. https://doi.org/10.1016/j.carbon.2022.01.044

    Article  CAS  Google Scholar 

  27. A. Y. Galashev and O. R. Rakhmanova. Computational study of the formation of aluminum-graphene nanocrystallites. Phys. Lett. A, 2020, 384(31), 126790. https://doi.org/10.1016/j.physleta.2020.126790

    Article  CAS  Google Scholar 

  28. A. E. Galashev, O. R. Rakhmanova, and L. A. Elshina. Molecular dynamics study of the formation of solid Al–C nanocomposites. Russ. J. Phys. Chem. B, 2018, 12(3), 403-411. https://doi.org/10.1134/s1990793118030247

    Article  CAS  Google Scholar 

  29. F. Shuang and K. E. Aifantis. Modelling dislocation-graphene interactions in a BCC Fe matrix by molecular dynamics simulations and gradient plasticity theory. Appl. Surf. Sci., 2021, 535, 147602. https://doi.org/10.1016/j.apsusc.2020.147602

    Article  CAS  Google Scholar 

  30. C. Zhang, C. Lu, L. Pei, J. Li, and R. Wang. The structural rearrangement with secondary reinforcement in graphene/nanotwinned copper nanocomposites: A molecular dynamics study. Composites, Part B, 2020, 182, 107610. https://doi.org/10.1016/j.compositesb.2019.107610

    Article  CAS  Google Scholar 

  31. Z. Yang, D. Wang, Z. Lu, and W. Hu. Atomistic simulation on the plastic deformation and fracture of bio-inspired graphene/Ni nanocomposites. Appl. Phys. Lett., 2016, 109(19), 191909. https://doi.org/10.1063/1.4967793

    Article  CAS  Google Scholar 

  32. Q. Guo, K. Kondoh, and S. M. Han. Nanocarbon-reinforced metal-matrix composites for structural applications. MRS Bull., 2019, 44(1), 40-45. https://doi.org/10.1557/mrs.2018.321

    Article  CAS  Google Scholar 

  33. S.-W. Chang, A. K. Nair, and M. J. Buehler. Nanoindentation study of size effects in nickel–graphene nanocomposites. Philos. Mag. Lett., 2013, 93(4), 196-203. https://doi.org/10.1080/09500839.2012.759293

    Article  CAS  Google Scholar 

  34. V. H. Vardanyan and H. M. Urbassek. Strength of graphene-coated Ni bi-crystals: A molecular dynamics nano-indentation study. Materials, 2020, 13(7), 1683. https://doi.org/10.3390/ma13071683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. Baral, A. Nandi, N. Bose, and N. Mukherjee. Crumpled graphene oxide/spinel cobalt oxide composite based high performance supercapacitive energy storage device. J. Energy Storage, 2021, 42, 103021. https://doi.org/10.1016/j.est.2021.103021

    Article  Google Scholar 

  36. H. D. Jang, S. K. Kim, H. Chang, J.-H. Choi, B.-G. Cho, E. H. Jo, J.-W. Choi, and J. Huang. Three-dimensional crumpled graphene-based platinum–gold alloy nanoparticle composites as superior electrocatalysts for direct methanol fuel cells. Carbon, 2015, 93, 869-877. https://doi.org/10.1016/j.carbon.2015.06.009

    Article  CAS  Google Scholar 

  37. S. K. Pradhan, M. R. Sahoo, S. Ratha, B. Polai, A. Mitra, B. Sathpathy, A. Sahu, S. Kar, P. V. Satyam, P. M. Ajayan, and S. K. Nayak. Graphene-incorporated aluminum with enhanced thermal and mechanical properties for solar heat collectors. AIP Adv., 2020, 10(6), 065016. https://doi.org/10.1063/5.0008786

    Article  CAS  Google Scholar 

  38. M. Rashad, F. Pan, A. Tang, M. Asif, S. Hussain, J. Gou, and J. Mao. Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method. J. Ind. Eng. Chem., 2015, 23, 243-250. https://doi.org/10.1016/j.jiec.2014.08.024

    Article  CAS  Google Scholar 

  39. H. G. P. Kumar, S. Prabhakaran, A. M. Xavior, S. Kalainathan, D. Lin, P. Shukla, and V. K. Vasudevan. Enhanced surface and mechanical properties of bioinspired nanolaminate graphene-aluminum alloy nanocomposites through laser shock processing for engineering applications. Mater. Today Commun., 2018, 16, 81-89. https://doi.org/10.1016/j.mtcomm.2018.04.010

    Article  CAS  Google Scholar 

  40. T. Dash, D. Rout, and B. Bihari Palei. Graphene decorated aluminum nano composite with improved micro hardness and electrical conductivity. Mater. Today Proc., 2021, 46, 11061-11063. https://doi.org/10.1016/j.matpr.2021.02.180

    Article  CAS  Google Scholar 

  41. L. A. Yolshina, R. V. Muradymov, and N. G. Molchanova. Corrosion behavior of aluminum–graphene and aluminum–graphite composite materials in a 3% NaCl aqueous solution. Russ. Metall., 2022, 2022(2), 153-160. https://doi.org/10.1134/s0036029522020057

    Article  Google Scholar 

  42. J. Zhang, Z. Chen, J. Zhao, and Z. Jiang. Microstructure and mechanical properties of aluminium-graphene composite powders produced by mechanical milling. Mech. Adv. Mater. Mod. Process., 2018, 4(1), 4. https://doi.org/10.1186/s40759-018-0037-5

    Article  Google Scholar 

  43. K. C. Sekhar, R. Surakasi, D. P. Roy, P. J. Rosy, T. K. Sreeja, S. Raja, and V. L. Chowdary. Mechanical behavior of aluminum and graphene nanopowder-based composites. Int. J. Chem. Eng., 2022, 2022, 1-13. https://doi.org/10.1155/2022/2224482

    Article  CAS  Google Scholar 

  44. N. S. Pourmand and H. Asgharzadeh. Aluminum matrix composites reinforced with graphene: A review on production, microstructure, and properties. Crit. Rev. Solid State Mater. Sci., 2020, 45(4), 289-337. https://doi.org/10.1080/10408436.2019.1632792

    Article  CAS  Google Scholar 

  45. L. K. Rysaeva, J. A. Baimova, S. V. Dmitriev, D. S. Lisovenko, V. A. Gorodtsov, and A. I. Rudskoy. Elastic properties of diamond-like phases based on carbon nanotubes. Diamond Relat. Mater., 2019, 97, 107411. https://doi.org/10.1016/j.diamond.2019.04.034

    Article  CAS  Google Scholar 

  46. Y. A. Baimova, R. T. Murzaev, and S. V. Dmitriev. Mechanical properties of bulk carbon nanomaterials. Phys. Solid State, 2014, 56(10), 2010-2016. https://doi.org/10.1134/s1063783414100035

    Article  CAS  Google Scholar 

  47. G. Plummer and G. J. Tucker. Bond-order potentials for the Ti3AlC2 and Ti3SiC2 MAX phases. Phys. Rev. B, 2019, 100(21), 214114. https://doi.org/10.1103/physrevb.100.214114

    Article  CAS  Google Scholar 

  48. S. J. Stuart, A. B. Tutein, and J. A. Harrison. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys., 2000, 112(14), 6472-6486. https://doi.org/10.1063/1.481208

    Article  CAS  Google Scholar 

  49. G. M. Poletaev, A. V. Sannikov, A. A. Berdychenko, and M. D. Starostenkov. Molecular dynamics study of plastic deformation mechanisms near the interphase boundary in two-dimensional bimetallic systems. Mater. Phys. Mech., 2015, 22(1), 15-19.

  50. A. Y. Galashev, K. P. Katin, and M. M. Maslov. Morse parameters for the interaction of metals with graphene and silicene. Phys. Lett. A, 2019, 383(2/3), 252-258. https://doi.org/10.1016/j.physleta.2018.10.025

    Article  CAS  Google Scholar 

  51. G. M. Poletaev, I. V. Zorya, D. V. Novoselova, and M. D. Starostenkov. Molecular dynamics simulation of hydrogen atom diffusion in crystal lattice of FCC metals. Int. J. Mater. Res., 2017, 108(10), 785-790. https://doi.org/10.3139/146.111556

    Article  CAS  Google Scholar 

  52. M. D. Starostenkov, G. M. Poletayev, and D. M. Starostenkov. Structure of interphase boundaries in bimetallic thin films. J. Mater. Sci. Technol., 2001, 17(1), 59-60.

  53. G. M. Poletayev and D. M. Starostenkov. Opredelenie temperatury plavleniya i temperaturnogo koeffitsienta lineinogo rasshireniya metodom molekulyarnoi dinamiki (Determination of the melting temperature and the thermal coefficient of linear expansion by the method of molecular dynamics). Fundam. Probl. Sovrem. Materialoved., 2004, 1(1), 81-85. [In Russian]

  54. C. Qiu, Y. Su, J. Yang, X. Wang, B. Chen, Q. Ouyang, and D. Zhang. Microstructural characteristics and mechanical behavior of SiC(CNT)/Al multiphase interfacial micro-zones via molecular dynamics simulations. Composites, Part B, 2021, 220, 108996. https://doi.org/10.1016/j.compositesb.2021.108996

    Article  CAS  Google Scholar 

  55. K. Katin, S. Kaya, and M. Maslov. Graphene nanoflakes and fullerenes doped with aluminum: features of Al–C interaction and adsorption characteristics of carbon shell. Lett. Mater., 2022, 12(2), 148-152. https://doi.org/10.22226/2410-3535-2022-2-148-152

    Article  Google Scholar 

  56. M. I. Mendelev, M. J. Kramer, C. A. Becker, and M. Asta. Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philos. Mag., 2008, 88(12), 1723-1750. https://doi.org/10.1080/14786430802206482

    Article  CAS  Google Scholar 

  57. L. A. Girifalco and V. G. Weizer. Application of the morse potential function to cubic metals. Phys. Rev., 1959, 114(3), 687-690. https://doi.org/10.1103/physrev.114.687

    Article  CAS  Google Scholar 

  58. L. R. Safina and R. T. Murzaev. Size of metal nanoparticles as a decisive factor in the formation of nickel–graphene composite: Molecular dynamics. J. Struct. Chem., 2021, 62(5), 794-801. https://doi.org/10.1134/s0022476621050152

    Article  CAS  Google Scholar 

  59. P. Puri and V. Yang. Effect of particle size on melting of aluminum at nano scales. J. Phys. Chem. C, 2007, 111(32), 11776-11783. https://doi.org/10.1021/jp0724774

    Article  CAS  Google Scholar 

  60. A. V. Savin, E. A. Korznikova, I. P. Lobzenko, Y. A. Baimova, and S. V. Dmitriev. Symmetric scrolled packings of multilayered carbon nanoribbons. Phys. Solid State, 2016, 58(6), 1278-1284. https://doi.org/10.1134/s1063783416060317

    Article  CAS  Google Scholar 

  61. G. Giovannetti, P. A. Khomyakov, G. Brocks, and V. M. Karpan, J. van den Brink, P.J. Kelly. Doping graphene with metal contacts. Phys. Rev. Lett., 2008, 101(2), 026803. https://doi.org/10.1103/physrevlett.101.026803

    Article  CAS  PubMed  Google Scholar 

  62. Y. Qi, L. G. Hector, N. Ooi, and J. B. Adams. A first principles study of adhesion and adhesive transfer at Al(111)/graphite(0001). Surf. Sci., 2005, 581(2/3), 155-168. https://doi.org/10.1016/j.susc.2005.02.048

    Article  CAS  Google Scholar 

  63. E. F. Sheka, N. A. Popova, V. A. Popova, E. A. Nikitina, and L. H. Shaymardanova. A tricotage-like failure of nanographene. J. Mol. Model., 2011, 17(5), 1121-1131. https://doi.org/10.1007/s00894-010-0816-3

    Article  CAS  PubMed  Google Scholar 

  64. L. R. Safina, K. A. Krylova, and J. A. Baimova. Effect of the proportion of metal atoms on the mechanical properties of the nickel/crumpled graphene composite. Fundam. Probl. Sovrem. Materialoved., 2022, (2), 213-220. https://doi.org/10.25712/astu.1811-1416.2022.02.009

    Article  PubMed  Google Scholar 

  65. L. R. Safina, J. A. Baimova, K. A. Krylova, R. T. Murzaev, S. A. Shcherbinin, and R. R. Mulyukov. Ni–graphene composite obtained by pressure–temperature treatment: Atomistic simulations. Phys. Status Solidi RRL, 2021, 15(11), 2100429. https://doi.org/10.1002/pssr.202100429

    Article  CAS  Google Scholar 

  66. K. A. Krylova, L. R. Safina, S. A. Shcherbinin, and J. A. Baimova. Methodology for molecular dynamics simulation of plastic deformation of a nickel/graphene composite. Materials, 2022, 15(11), 4038. https://doi.org/10.3390/ma15114038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. L. R. Safina, K. A. Krylova, and J. A. Baimova. Molecular dynamics study of the mechanical properties and deformation behavior of graphene/metal composites. Mater. Today Phys., 2022, 28, 100851. https://doi.org/10.1016/j.mtphys.2022.100851

    Article  CAS  Google Scholar 

Download references

Funding

The work of L. R. Safina was supported by the Russian Science Foundation (grant No. 20-72-10112).

The work of E. A. Rozhnova was supported by the State Assignment of the Institute for Metals Superplasticity Problems, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Safina.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 2, 105903.https://doi.org/10.26902/JSC_id105903

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safina, L.R., Rozhnova, E.A. MOLECULAR DYNAMICS SIMULATION OF THE DEFORMATION BEHAVIOR OF THE GRAPHENE/Al COMPOSITE. J Struct Chem 64, 240–252 (2023). https://doi.org/10.1134/S0022476623020087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623020087

Keywords

Navigation