Skip to main content
Log in

STRUCTURE AND THERMODYNAMIC CHARACTERISTICS OF INTERMEDIATE CATALYTIC ADDUCTS IN CUMENE OXIDATION IN THE PRESENCE OF 2-ETHYLHEXANOATES OF GROUP 2 METALS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of cumene oxidation in the presence of Mg, Ca, Sr, Ba 2-ethylhexanoates is studied experimentally. It is established that the Mg 2-ethylhexanoate exhibits the highest catalytic performance. It is shown by the PBEPBE-GD3/def2TZVP method that the intermediate adducts of cumene, cumene hydroperoxide (gauche- and trans-conformers), and dimethyl phenyl carbinol with Mg 2-ethylhexanoate are thermodynamically possible. The data on the structure of intermediate adducts and electron density distribution were obtained by conducting PBEPBE-GD3/def2TZVP quantum chemical calculations. The totality of structural data, energy parameters of the adducts, nature of the electron density distribution, and the strength of the O–O bond show that the intermediate adduct of cumene hydroperoxide (trans-conformer) with Mg 2-ethylhexanoate most rapidly decomposes into free radicals. A mechanism of catalytic activity of Mg 2-ethylhexanoate in cumene oxidation is proposed based on the results of quantum chemical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. Organic Electrochemistry / Eds. O. Hammerich and B. Speiser. CRC Press, 2015. https://doi.org/10.1201/b19122

    Book  Google Scholar 

  2. L. M. J. Sprakel and B. Schuur. Intermolecular interactions of phenolic mixtures studied to aid implementation of bio-based phenol use in the polycarbonate industry. J. Chem. Thermodyn., 2021, 162, 106577. https://doi.org/10.1016/j.jct.2021.106577.

    Article  CAS  Google Scholar 

  3. Y. Yu, Y. Wang, P. Xu, and J. Chang. Preparation and characterization of phenolic foam modified with bio-oil. Materials, 2018, 11(11), 2228. https://doi.org/10.3390/ma11112228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. V. Russo, E. Santacesaria, R. Tesser, R. Turco, R. Vitiello, and M. Di Serio. Validation of the kinetics of the hydrogen peroxide propene oxide process in a dynamic continuous stirred tank reactor. Ind. Eng. Chem. Res., 2018, 57(48), 16201-16208. https://doi.org/10.1021/acs.iecr.8b03233.

    Article  CAS  Google Scholar 

  5. Y. Wang, G. Zhang, T. Guan, F. Xu, J. Wu, E. Zhou, J. Wang, and K. Li. Ultra-deep oxidative desulfurization of model oil catalyzed by in situ carbon-supported vanadium oxides using cumene hydroperoxide as oxidant. ChemistrySelect, 2020, 5(7), 2148-2156. https://doi.org/10.1002/slct.201903893.

    Article  CAS  Google Scholar 

  6. K. Songsing, T. Vatanatham, and N. Hansupalak. Kinetics and mechanism of grafting styrene onto natural rubber in emulsion polymerization using cumene hydroperoxide–tetraethylenepentamine as redox initiator. Eur. Polym. J., 2013, 49(5), 1007-1016. https://doi.org/10.1016/j.eurpolymj.2013.01.027.

    Article  CAS  Google Scholar 

  7. A. F. Ajayi and R. E. Akhigbe. Apoptotic inducement of neuronal cells by codeine: Possible role of disrupted redox state and caspase 3 signaling. Heliyon, 2021, 7(7), e07481. https://doi.org/10.1016/j.heliyon.2021.e07481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Weber, R. Hoffmann, and M. Weber. Some safety aspects on the cleavage of cumene hydroperoxide in the phenol process. Process Saf. Prog., 2019, 38(4). https://doi.org/10.1002/prs.12034.

    Article  Google Scholar 

  9. A. Nowacka, R. Vismara, G. Mercuri, M. Moroni, M. Palomino, K. V. Domasevitch, C. Di Nicola, C. Pettinari, G. Giambastiani, F. X. Llabrés i Xamena, S. Galli, and A. Rossin. Cobalt(II) bipyrazolate metal–organic frameworks as heterogeneous catalysts in cumene aerobic oxidation: A tag-dependent selectivity. Inorg. Chem., 2020, 59(12), 8161-8172. https://doi.org/10.1021/acs.inorgchem.0c00481.

    Article  CAS  PubMed  Google Scholar 

  10. A. Nowacka, P. Briantais, C. Prestipino, and F. X. Llabrés i Xamena. Selective aerobic oxidation of cumene to cumene hydroperoxide over mono- and bimetallic trimesate metal–organic frameworks prepared by a facile “green” aqueous synthesis. ACS Sustainable Chem. Eng., 2019, 7(8), 7708-7715. https://doi.org/10.1021/acssuschemeng.8b06472.

    Article  CAS  Google Scholar 

  11. Q. Lu, G. Shi, H. Zhou, E. Yuan, C. Chen, and L. Ji. A highly efficient transformation from cumene to cumyl hydroperoxide via catalytic aerobic oxidation at room temperature and investigations into solvent effects, reaction networks and mechanisms. Appl. Catal., A, 2022, 630, 118441. https://doi.org/10.1016/j.apcata.2021.

    Article  CAS  Google Scholar 

  12. H. Zhang, C. Liu, X. Ren, H. Yang, and S. Lin. Synthesis of polycarboxylic ether superplasticizers based on the high conversion of EPEG in a transition metal oxide heterogeneous catalytic system. Colloids Surf., A, 2022, 643, 128780. https://doi.org/10.1016/j.colsurfa.2022.128780.

    Article  CAS  Google Scholar 

  13. W. Y. Suprun, R. B. Sheparovych, Y. M. Hrynda, O. Y. Khavunko, and I. A. Opeida. Supported transition metals oxides and N-hydroxyphthalimide as binary catalytic systems for the liquid-phase oxidation of cumene. Mol. Catal., 2021, 510, 111683. https://doi.org/10.1016/j.mcat.2021.111683.

    Article  CAS  Google Scholar 

  14. J. A. Kelly, J. Gramüller, R. M. Gschwind, and R. Wolf. Low-oxidation state cobalt–magnesium complexes: ion-pairing and reactivity. Dalton Trans., 2021, 50(39), 13985-13992. https://doi.org/10.1039/d1dt02621f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. N. V. Ulitin, K. E. Kharlampidi, K. A. Tereshchenko, N. A. Novikov, D. A. Shiyan, T. S. Nurmurodov, N. M. Nurullina, N. N. Ziyatdinov, and N. P. Miroshkin. The cumene oxidation and cumene hydroperoxide decomposition in the presence of Zn, Cd or Hg 2-ethylhexanoate: Kinetic model and analysis of its sensitivity. Mol. Catal., 2021, 515, 111886. https://doi.org/10.1016/j.mcat.2021.111886.

    Article  CAS  Google Scholar 

  16. Y. Wu, J. Zhao, Q. Meng, M. Bi, C. Ma, and Z. Yu. Effects of oxygen: Experimental and VTST/DFT studies on cumene autoxidation with air under atmospheric pressure. ACS Omega, 2022, 7(38), 34547-34553. https://doi.org/10.1021/acsomega.2c04362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. S. S. Adam, L. H. Abdel-Rahman, H. E.-S. Ahmed, M. M. Makhlouf, M. Alhasani, and N. M. El-Metwaly. Enhanced catalytic (ep)oxidation of olefins by VO(II), ZrO(II) and Zn(II)-imine complexes; extensive characterization supported by DFT studies. J. Mol. Struct., 2021, 1236, 130295. https://doi.org/10.1016/j.molstruc.2021.130295.

    Article  CAS  Google Scholar 

  18. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian16., Revision B.01. Wallingford, CT: Gaussian Inc., 2016.

  19. J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18), 3865-3868. https://doi.org/10.1103/physrevlett.77.3865.

    Article  CAS  PubMed  Google Scholar 

  20. F. Weigend and R. Ahlrichs. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys., 2005, 7(18), 3297. https://doi.org/10.1039/b508541a.

    Article  CAS  PubMed  Google Scholar 

  21. Z. Chen, Y. Li, Y. Cao, Q. Zhang, H. Yu, and F. Peng. Inhibitory effect of Zn2+ on the chain-initiation process of cumene oxidation. Int. J. Quantum Chem., 2021, 121(21). https://doi.org/10.1002/qua.26780.

    Article  Google Scholar 

  22. S. Liao, Y. Chi, H. Yu, H. Wang, and F. Peng. Tuning the selectivity in the aerobic oxidation of cumene catalyzed by nitrogen-doped carbon nanotubes. ChemCatChem, 2014, 6(2), 555-560. https://doi.org/10.1002/cctc.201300909.

    Article  CAS  Google Scholar 

  23. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys., 2010, 132(15), 154104. https://doi.org/10.1063/1.3382344.

    Article  CAS  PubMed  Google Scholar 

  24. G. Scalmani and M. J. Frisch. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys., 2010, 132(11), 114110. https://doi.org/10.1063/1.3359469.

    Article  CAS  PubMed  Google Scholar 

  25. A. E. Reed, R. B. Weinstock, and F. Weinhold. Natural population analysis. J. Chem. Phys., 1985, 83(2), 735-746. https://doi.org/10.1063/1.449486.

    Article  CAS  Google Scholar 

  26. S. L. Khursan. Homodesmotic method of determining the O–H bond dissociation energies in phenols. Kinet. Catal., 2016, 57(2), 159-169. https://doi.org/10.1134/s0023158416010067.

    Article  CAS  Google Scholar 

  27. E. T. Denisov and I. B. Afanasev. Oxidation and Antioxidants in Organic Chemistry and Biology. CRC Press, 2005. https://doi.org/10.1201/9781420030853.

  28. A. B. Remizov, D. I. Kamalova, R. A. Skochilov, and M. P. Semenov. Self- and heteroassociates of cumyl hydroperoxide: FTIR-spectroscopy, chemometrics (factor analysis) and quantum chemical calculations. J. Mol. Struct., 2008, 880(1-3), 52-58. https://doi.org/10.1016/j.molstruc.2007.11.047.

    Article  CAS  Google Scholar 

  29. R. D. Bach and H. B. Schlegel. Bond dissociation energy of peroxides revisited. J. Phys. Chem. A, 2020, 124(23), 4742-4751. https://doi.org/10.1021/acs.jpca.0c02859.

    Article  CAS  PubMed  Google Scholar 

  30. CRC Handbook of Chemistry and Physics / Ed. W.M. Haynes. CRC Press, 2014. https://doi.org/10.1201/b17118.

    Book  Google Scholar 

  31. E. R. H. Walter, C. Hogg, D. Parker, and J. A. G. Williams. Designing magnesium-selective ligands using coordination chemistry principles. Coord. Chem. Rev., 2021, 428, 213622. https://doi.org/10.1016/j.ccr.2020.213622.

    Article  CAS  Google Scholar 

  32. R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A, 1976, 32(5), 751-767. https://doi.org/10.1107/s0567739476001551.

    Article  Google Scholar 

Download references

Funding

All the quantum chemical calculations were carried out on the equipment of the Khimia Common Use Center of the Ufa Institute of Chemistry of UFRC RAS and the Agidel Regional Common Use Center of UFRC RAS.

The study was funded by the Russian Science Foundation (project No. 22-13-00461, https://rscf.ru/project/22-13-00461/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Tereshchenko.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 2, 105891.https://doi.org/10.26902/JSC_id105891

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulitin, N.V., Anisimova, V.I., Khursan, S.L. et al. STRUCTURE AND THERMODYNAMIC CHARACTERISTICS OF INTERMEDIATE CATALYTIC ADDUCTS IN CUMENE OXIDATION IN THE PRESENCE OF 2-ETHYLHEXANOATES OF GROUP 2 METALS. J Struct Chem 64, 227–239 (2023). https://doi.org/10.1134/S0022476623020075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623020075

Keywords

Navigation