Skip to main content
Log in

SYNTHESIS, STRUCTURE, AND OPTICAL PROPERTIES OF THE LANTHANUM(III) CATIONIC COORDINATION POLYMER WITH 1,4-DIAZABICYCLO[2.2.2]OCTANE N,N′-DIOXIDE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The first example of a coordination polymer with a triply charged metal ion is obtained based on the conformationally mobile bridging ligand 1,4-diazabicyclo[2.2.2]octane N,N′-dioxide (odabco). Its structure is characterized by single crystal X-ray diffraction. The compound has the formula [La(odabco)3]Cl3·xH2O (1) with a variable hydration number and is composed of six-coordinated octahedral La3+ sites. The 3D cationic coordination lattice of 1 has a primitive cubic (pcu) topology and contains isolated voids with a total specific volume of 28% filled with chloride anions and water molecules. The compound is characterized by powder XRD and elemental analysis. The absence of absorption maxima in the visible and UV ranges up to 270 nm is shown by diffuse reflectance spectroscopy for 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. Y. Zhu, M. Zhu, L. Xia, Y. Wu, H. Hua, and J. Xie. Lanthanide metal-organic frameworks with six-coordinated Ln(III) ions and free functional organic sites for adsorptions and extensive catalytic activities. Sci. Rep., 2016, 6(1), 29728. https://doi.org/10.1038/srep29728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Y. Zhang, S. Liu, Z.-S. Zhao, Z. Wang, R. Zhang, L. Liu, and Z.-B. Han. Recent progress in lanthanide metal–organic frameworks and their derivatives in catalytic applications. Inorg. Chem. Front., 2021, 8(3), 590-619. https://doi.org/10.1039/d0qi01191f

    Article  CAS  Google Scholar 

  3. Y. B. N. Tran and P. T. K. Nguyen. Lanthanide metal–organic frameworks for catalytic oxidation of olefins. New J. Chem., 2021, 45(4), 2090-2102. https://doi.org/10.1039/d0nj05685e

    Article  CAS  Google Scholar 

  4. D. Bejan, L. G. Bahrin, S. Shova, N. L. Marangoci, Ü. Kökçam-Demir, V. Lozan, and C. Janiak. New microporous lanthanide organic frameworks. Synthesis, structure, luminescence, sorption, and catalytic acylation of 2-naphthol. Molecules, 2020, 25(13), 3055. https://doi.org/10.3390/molecules25133055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. F. Saraci, V. Quezada-Novoa, P. R. Donnarumma, and A. J. Howarth. Rare-earth metal–organic frameworks: from structure to applications. Chem. Soc. Rev., 2020, 49(22), 7949-7977. https://doi.org/10.1039/d0cs00292e

    Article  CAS  PubMed  Google Scholar 

  6. A. Kuznetsova, V. Matveevskaya, D. Pavlov, A. Yakunenkov, and A. Potapov. Coordination polymers based on highly emissive ligands: synthesis and functional properties. Materials, 2020, 13(12), 2699. https://doi.org/10.3390/ma13122699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Y. A. Belousov and A. A. Drozdov. Lanthanide acylpyrazolonates: synthesis, properties and structural features. Russ. Chem. Rev., 2012, 81(12), 1159-1169. https://doi.org/10.1070/rc2012v081n12abeh004255

    Article  Google Scholar 

  8. V. V. Utochnikova, A. N. Aslandukov, A. A. Vashchenko, A. S. Goloveshkin, A. A. Alexandrov, R. Grzibovskis, and J.-C. G. Bünzli. Identifying lifetime as one of the key parameters responsible for the low brightness of lanthanide-based OLEDs. Dalton Trans., 2021, 50(37), 12806-12813. https://doi.org/10.1039/d1dt02269e

    Article  CAS  PubMed  Google Scholar 

  9. V. G. Nosov, A. S. Kupryakov, I. E. Kolesnikov, A. A. Vidyakina, I. I. Tumkin, S. S. Kolesnik, M. N. Ryazantsev, N. A. Bogachev, M. Y. Skripkin, and A. S. Mereshchenko. Heterometallic europium(III)–lutetium(III) terephthalates as bright luminescent antenna MOFs. Molecules, 2022, 27(18), 5763. https://doi.org/10.3390/molecules27185763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. N. Zhestkij, A. Efimova, S. Rzhevskiy, Y. Kenzhebayeva, S. Bachinin, E. Gunina, M. Sergeev, V. Dyachuk, and V. A. Milichko. Reversible and irreversible laser interference patterning of MOF thin films. Crystals, 2022, 12(6), 846. https://doi.org/10.3390/cryst12060846

    Article  CAS  Google Scholar 

  11. D. Zhao, K. Yu, X. Han, Y. He, and B. Chen. Recent progress on porous MOFs for process-efficient hydrocarbon separation, luminescent sensing, and information encryption. Chem. Commun., 2022, 58(6), 747-770. https://doi.org/10.1039/d1cc06261a

    Article  CAS  Google Scholar 

  12. Y. Zhao, H. Zeng, X.-W. Zhu, W. Lu, and D. Li. Metal–organic frameworks as photoluminescent biosensing platforms: mechanisms and applications. Chem. Soc. Rev., 2021, 50(7), 4484-4513. https://doi.org/10.1039/d0cs00955e

    Article  CAS  PubMed  Google Scholar 

  13. S.-J. Wang, Q. Li, G.-L. Xiu, L.-X. You, F. Ding, R. Van Deun, I. Dragutan, V. Dragutan, and Y.-G. Sun. New Ln–MOFs based on mixed organic ligands: synthesis, structure and efficient luminescence sensing of the Hg2+ ions in aqueous solutions. Dalton Trans., 2021, 50(43), 15612-15619. https://doi.org/10.1039/d1dt02687a

    Article  CAS  PubMed  Google Scholar 

  14. P. A. Demakov, A. A. Ryadun, and D. N. Dybtsev. Highly luminescent crystalline sponge: sensing properties and direct X-ray visualization of the substrates. Molecules, 2022, 27(22), 8055. https://doi.org/10.3390/molecules27228055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. M. Lunev and Y. A. Belousov. Luminescent sensor materials based on rare-earth element complexes for detecting cations, anions, and small molecules. Russ. Chem. Bull., 2022, 71(5), 825-857. https://doi.org/10.1007/s11172-022-3485-3

    Article  CAS  Google Scholar 

  16. R. Goswami, N. Seal, S. R. Dash, A. Tyagi, and S. Neogi. Devising chemically robust and cationic Ni(II)–MOF with nitrogen-rich micropores for moisture-tolerant CO2 capture: Highly regenerative and ultrafast colorimetric sensor for TNP and multiple oxo-anions in water with theoretical revelation. ACS Appl. Mater. Interfaces, 2019, 11(43), 40134-40150. https://doi.org/10.1021/acsami.9b15179

    Article  CAS  PubMed  Google Scholar 

  17. J. Ma, C.-C. Wang, Z.-X. Zhao, P. Wang, J.-J. Li, and F.-X. Wang. Adsorptive capture of perrhenate from simulated wastewater by cationic 2D-MOF BUC-17. Polyhedron, 2021, 202, 115218. https://doi.org/10.1016/j.poly.2021.115218

    Article  CAS  Google Scholar 

  18. X. Li, S. Zhang, L. Zhang, Y. Yang, K. Zhang, Y. Cai, Y. Xu, Y. Gai, and K. Xiong. Viologen-based cationic metal–organic framework for antibiotics detection and removal in water. Cryst. Growth Des., 2022, 22(7), 3991-3997. https://doi.org/10.1021/acs.cgd.2c00170

    Article  CAS  Google Scholar 

  19. S. Sharma, A. V. Desai, B. Joarder, and S. K. Ghosh. A water-stable ionic MOF for the selective capture of toxic oxoanions of SeVI and AsV and crystallographic insight into the ion-exchange mechanism. Angew. Chem., Int. Ed., 2020, 59(20), 7788-7792. https://doi.org/10.1002/anie.202000670

    Article  CAS  Google Scholar 

  20. S. Dutta, S. Let, M. M. Shirolkar, A. V. Desai, P. Samanta, S. Fajal, Y. D. More, and S. K. Ghosh. A luminescent cationic MOF for bimodal recognition of chromium and arsenic based oxo-anions in water. Dalton Trans., 2021, 50(29), 10133-10141. https://doi.org/10.1039/d1dt01097b

    Article  CAS  PubMed  Google Scholar 

  21. K. Guesh, C. A. D. Caiuby, Á. Mayoral, M. Díaz-García, I. Díaz, and M. Sanchez-Sanchez. Sustainable preparation of MIL-100(Fe) and its photocatalytic behavior in the degradation of methyl orange in water. Cryst. Growth Des., 2017, 17(4), 1806-1813. https://doi.org/10.1021/acs.cgd.6b01776

    Article  CAS  Google Scholar 

  22. C.-X. Yu, J. Chen, Y. Zhang, W.-B. Song, X.-Q. Li, F.-J. Chen, Y.-J. Zhang, D. Liu, and L.-L. Liu. Highly efficient and selective removal of anionic dyes from aqueous solution by using a protonated metal-organic framework. J. Alloys Compd., 2021, 853, 157383. https://doi.org/10.1016/j.jallcom.2020.157383

    Article  CAS  Google Scholar 

  23. O. M. Yaghi and H. Li. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc., 1995, 117(41), 10401/10402. https://doi.org/10.1021/ja00146a033

    Article  CAS  Google Scholar 

  24. S. A. Barnett and N. R. Champness. Structural diversity of building-blocks in coordination framework synthesis - combining M(NO3)2 junctions and bipyridyl ligands. Coord. Chem. Rev., 2003, 246(1/2), 145-168. https://doi.org/10.1016/s0010-8545(03)00121-8

    Article  CAS  Google Scholar 

  25. O. Toma, N. Mercier, M. Allain, F. Meinardi, A. Forni, and C. Botta. Mechanochromic luminescence of N,N-dioxide-4,4-bipyridine bismuth coordination polymers. Cryst. Growth Des., 2020, 20(12), 7658-7666. https://doi.org/10.1021/acs.cgd.0c00872

    Article  CAS  Google Scholar 

  26. S. Chorazy, J. J. Zakrzewski, M. Reczyński, and B. Sieklucka. Multi-colour uranyl emission efficiently tuned by hexacyanidometallates within hybrid coordination frameworks. Chem. Commun., 2019, 55(21), 3057-3060. https://doi.org/10.1039/c8cc09757g

    Article  CAS  Google Scholar 

  27. F. Ma, J. Xiong, Y.-S. Meng, J. Yang, H.-L. Sun, and S. Gao. Rational construction of a porous lanthanide coordination polymer featuring reversible guest-dependent magnetic relaxation behavior. Inorg. Chem. Front., 2018, 5(11), 2875-2884. https://doi.org/10.1039/c8qi00814k

    Article  CAS  Google Scholar 

  28. F. Ma, R. Sun, A.-H. Sun, J. Xiong, H.-L. Sun, and S. Gao. Regulating the structural dimensionality and dynamic properties of a porous dysprosium coordination polymer through solvent molecules. Inorg. Chem. Front., 2020, 7(4), 930-938. https://doi.org/10.1039/c9qi01440c

    Article  CAS  Google Scholar 

  29. Y. Huang, X. Lin, B. Chen, H. Zheng, Z. Chen, H. Li, and S. Zheng. Thermal-responsive polyoxometalate–metalloviologen hybrid: reversible intermolecular three-component reaction and temperature-regulated resistive switching behaviors. Angew. Chem., Int. Ed., 2021, 60(31), 16911-16916. https://doi.org/10.1002/anie.202104333

    Article  CAS  Google Scholar 

  30. B. Chen, Y.-R. Huang, K.-Y. Song, X.-L. Lin, H.-H. Li, and Z.-R. Chen. Molecular nonvolatile memory based on [-GeW12O40]4–/metalloviologen hybrids can work at high temperature monitored by chromism. Chem. Mater., 2021, 33(6), 2178-2186. https://doi.org/10.1021/acs.chemmater.1c00090

    Article  CAS  Google Scholar 

  31. Z. Shi, C. Mei, G. Niu, and Q. Han. Two inorganic–organic hybrids based on a polyoxometalate: Structures, characterizations, and epoxidation of olefins. J. Coord. Chem., 2018, 71(9), 1460-1468. https://doi.org/10.1080/00958972.2018.1468026

    Article  CAS  Google Scholar 

  32. Y. He, Y.-R. Huang, Y.-L. Li, H.-H. Li, Z.-R. Chen, and R. Jiang. Encapsulating halometallates into 3-D lanthanide-viologen frameworks: controllable emissions, reversible thermochromism, photocurrent responses, and electrical bistability behaviors. Inorg. Chem., 2019, 58(20), 13862-13880. https://doi.org/10.1021/acs.inorgchem.9b01740

    Article  CAS  PubMed  Google Scholar 

  33. D.-H. Wang, L.-M. Zhao, X.-Y. Lin, Y.-K. Wang, W.-T. Zhang, K.-Y. Song, H.-H. Li, and Z.-R. Chen. Iodoargentate/iodobismuthate-based materials hybridized with lanthanide-containing metalloviologens: thermochromic behaviors and photocurrent responses. Inorg. Chem. Front., 2018, 5(5), 1162-1173. https://doi.org/10.1039/c7qi00755h

    Article  CAS  Google Scholar 

  34. P. A. Demakov, A. S. Romanov, D. G. Samsonenko, D. N. Dybtsev, and V. P. Fedin. Synthesis and structure of manganese(II) coordination polymers with 1,4-diazabicyclo[2.2.2]octane N,N-dioxide: solvent and template effects. Russ. Chem. Bull., 2020, 69(8), 1511-1519. https://doi.org/10.1007/s11172-020-2930-4

    Article  CAS  Google Scholar 

  35. CrysAlisPro 1.171.38.46. Rigaku Oxford Diffraction, 2015.

  36. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  37. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  38. P. Kistaiah, K. Sathyanarayana Murthy, L. Iyengar, and K. V. Krishna Rao. X-ray studies on the high pressure behaviour of some rare-earth formates. J. Mater. Sci., 1981, 16(8), 2321-2323. https://doi.org/10.1007/bf00542401

    Article  CAS  Google Scholar 

  39. F. Zhang, Y. Zhang, Q. Tan, L. Lin, X. Liu, and X. Feng. Kinetic resolution of aziridines via catalytic asymmetric ring-opening reaction with mercaptobenzothiazoles. Org. Lett., 2019, 21(15), 5928-5932. https://doi.org/10.1021/acs.orglett.9b02058

    Article  CAS  PubMed  Google Scholar 

  40. L. C. Fernandes, J. R. Matos, L. B. Zinner, G. Vicentini, and J. Zukerman-Schpector. Crystal structures, spectroscopic, TG and DSC studies of lanthanide picrate complexes with 4-methylmorpholine N-oxide (MMNO). Polyhedron, 2000, 19(22/23), 2313-2318. https://doi.org/10.1016/s0277-5387(00)00494-0

    Article  CAS  Google Scholar 

  41. N. A. Thiele, D. J. Fiszbein, J. J. Woods, and J. J. Wilson. Tuning the separation of light lanthanides using a reverse-size selective aqueous complexant. Inorg. Chem., 2020, 59(22), 16522-16530. https://doi.org/10.1021/acs.inorgchem.0c02413

    Article  CAS  PubMed  Google Scholar 

  42. X. Jiang, M.-L. Chen, Y.-C. Yang, and Z.-H. Zhou. Formation and catalytic activity of novel water soluble di[ethylenediaminetetraacetato bis(N-oxido)] lanthanides. Inorg. Chem. Commun., 2013, 35, 9-12. https://doi.org/10.1016/j.inoche.2013.05.012

    Article  CAS  Google Scholar 

  43. S. Han, Q. Wang, J. Xu, and X. Bu. Anion-triggered modulation of structure and magnetic properties of copper(I)–dysprosium(III) complexes derived from 1-hydroxybenzotriazolate. Eur. J. Inorg. Chem., 2015, 2015(32), 5379-5386. https://doi.org/10.1002/ejic.201500799

    Article  CAS  Google Scholar 

  44. C. Kalogridis, M. A. Palacios, A. Rodríguez-Diéguez, A. J. Mota, D. Choquesillo-Lazarte, E. K. Brechin, and E. Colacio. Heterometallic oximato-bridged linear trinuclear NiII–MIII–NiII (MIII = Mn, Fe, Tb) complexes constructed with the fac-O3[Ni(HL)3]– metalloligand (H2L = pyrimidine-2-carboxamide oxime): A theoretical and experimental magneto-structural study. Eur. J. Inorg. Chem., 2011, 2011(34), 5225-5232. https://doi.org/10.1002/ejic.201100700

    Article  CAS  Google Scholar 

  45. C. Papatriantafyllopoulou, M. Estrader, C. G. Efthymiou, D. Dermitzaki, K. Gkotsis, A. Terzis, C. Diaz, and S. P. Perlepes. In search for mixed transition metal/lanthanide single-molecule magnets: Synthetic routes to NiII/TbIII and NiII/DyIII clusters featuring a 2-pyridyl oximate ligand. Polyhedron, 2009, 28(9/10), 1652-1655. https://doi.org/10.1016/j.poly.2008.10.024

    Article  CAS  Google Scholar 

  46. W.-J. Lu, L.-P. Zhang, H.-B. Song, Q.-M. Wang, and T. C. W. Mak. Novel lanthanide(III) coordination networks based on 1,2-bis(4-pyridyl)ethane-N,N-dioxide and trans-1,2-bis(4-pyridyl)ethene-N,N-dioxide. New J. Chem., 2002, 26(6), 775-781. https://doi.org/10.1039/b111660f

    Article  CAS  Google Scholar 

  47. M. E. Minyaev, S. A. Korchagina, A. N. Tavtorkin, A. V. Churakov, and I. E. Nifantev. Dinuclear neodymium and lanthanum bis(2,6-diisopropylphenyl) phosphate complexes bearing a hydroxide ligand: catalytic activity of the Nd complex in 1,3-diene polymerization. Acta Crystallogr., Sect. C: Struct. Chem., 2018, 74(6), 673-682. https://doi.org/10.1107/s2053229618006666

    Article  CAS  Google Scholar 

  48. X.-N. Lv, Y.-H. Zhang, P.-P. Sun, P.-F. Wang, J.-J. Tang, G. Yang, Q. Shi, and F.-N. Shi. One pot synthesis of lanthanide-iron-sodium trimetallic metal-organic frameworks as anode materials for lithium-ion batteries. J. Solid State Chem., 2022, 306, 122786. https://doi.org/10.1016/j.jssc.2021.122786

    Article  CAS  Google Scholar 

  49. K. C. Casey, A. M. Brown, and J. R. Robinson. Yttrium and lanthanum bis(phosphine-oxide)methanides: structurally diverse, dynamic, and reactive. Inorg. Chem. Front., 2021, 8(6), 1539-1552. https://doi.org/10.1039/d0qi01438a

    Article  CAS  Google Scholar 

  50. Y. A. Bryleva, A. V. Artemev, L. A. Glinskaya, D. G. Samsonenko, M. I. Rakhmanova, M. P. Davydova, and K. M. Yzhikova. Eu(III) and Tb(III) complexes based on diphenyl(pyrimidin-2-yl)phosphine oxide: synthesis, structure, and photoluminescent properties. J. Struct. Chem., 2021, 62(2), 265-276. https://doi.org/10.1134/s0022476621020116

    Article  CAS  Google Scholar 

  51. N. S. Rukk, A. S. Antsyshkina, G. G. Sadikov, V. S. Sergienko, A. Y. Skryabina, R. A. Osipov, and L. Y. Alibekova. Synthesis and structure of complex compounds of lanthanum, europium, and scandium iodides with antipyrine. Russ. J. Inorg. Chem., 2009, 54(4), 539-542. https://doi.org/10.1134/s0036023609040081

    Article  Google Scholar 

  52. M. Deng, N. D. Schley, and G. Ung. High circularly polarized luminescence brightness from analogues of Shibasakis lanthanide complexes. Chem. Commun., 2020, 56(94), 14813-14816. https://doi.org/10.1039/d0cc06568d

    Article  CAS  Google Scholar 

  53. K. Wang, X. M. Luo, P. Chen, Y. Q. Liu, B. Liu, H. J. Jiang, and Y. C. Ju. Two rare-earth complexes (Sm, La) based on a carbon-bridged bis(phenolate): Synthesis and crystal structures. Russ. J. Coord. Chem., 2019, 45(3), 238-243. https://doi.org/10.1134/s1070328419030114

    Article  CAS  Google Scholar 

  54. F. M. Amombo Noa, E. S. Grape, M. Åhlén, W. E. Reinholdsson, C. R. Göb, F.-X. Coudert, O. Cheung, A. K. Inge, and L. Öhrström. Chiral lanthanum metal–organic framework with gated CO2 sorption and concerted framework flexibility. J. Am. Chem. Soc., 2022, 144(19), 8725-8733. https://doi.org/10.1021/jacs.2c02351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. K. D. Abasheeva, P. A. Demakov, D. N. Dybtsev, and V. P. Fedin. Crystal structure of coordination cobalt(II) and zinc(II) polymers with 1,4-diazabicyclo[2.2.2]octane N,N-dioxide. J. Struct. Chem., 2022, 63(8), 1349-1357. https://doi.org/10.1134/s0022476622080169

    Article  CAS  Google Scholar 

  56. A. L. Spek. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr., 2003, 36(1), 7-13. https://doi.org/10.1107/s0021889802022112

    Article  CAS  Google Scholar 

  57. A. L. Spek. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 9-18. https://doi.org/10.1107/s2053229614024929

    Article  CAS  Google Scholar 

  58. P. A. Demakov, A. S. Poryvaev, K. A. Kovalenko, D. G. Samsonenko, M. V. Fedin, V. P. Fedin, and D. N. Dybtsev. Structural dynamics and adsorption properties of the breathing microporous aliphatic metal–organic framework. Inorg. Chem., 2020, 59(21), 15724-15732. https://doi.org/10.1021/acs.inorgchem.0c02125

    Article  CAS  PubMed  Google Scholar 

  59. P. A. Demakov, S. A. Sapchenko, D. G. Samsonenko, D. N. Dybtsev, and V. P. Fedin. Coordination polymers based on zinc(II) and manganese(II) with 1,4-cyclohexanedicarboxylic acid. Russ. Chem. Bull., 2018, 67(3), 490-496. https://doi.org/10.1007/s11172-018-2098-3

    Article  CAS  Google Scholar 

  60. P. J. Llabres-Campaner, J. Pitarch-Jarque, R. Ballesteros-Garrido, B. Abarca, R. Ballesteros, and E. García-España. Bicyclo[2.2.2]octane-1,4-dicarboxylic acid: towards transparent metal–organic frameworks. Dalton Trans., 2017, 46(23), 7397-7402. https://doi.org/10.1039/c7dt00855d

    Article  CAS  PubMed  Google Scholar 

  61. P. A. Demakov, D. G. Samsonenko, D. N. Dybtsev, and V. P. Fedin. Zinc(II) metal-organic frameworks with 1,4-diazabicyclo[2.2.2]octane N,N-dioxide: control of the parameters of the cationic porous framework and optical properties. Russ. Chem. Bull., 2022, 71(1), 83-90. https://doi.org/10.1007/s11172-022-3380-y

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out within Russian Science Foundation project No. 22-23-20179, https://rscf.ru/project/22-23-20179/ and Project No. r-22 of the Government of the Novosibirsk Oblast’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Demakov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 2, 105634.https://doi.org/10.26902/JSC_id105634

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demakov, P.A., Ovchinnikova, A.A. & Fedin, V.P. SYNTHESIS, STRUCTURE, AND OPTICAL PROPERTIES OF THE LANTHANUM(III) CATIONIC COORDINATION POLYMER WITH 1,4-DIAZABICYCLO[2.2.2]OCTANE N,N′-DIOXIDE. J Struct Chem 64, 199–207 (2023). https://doi.org/10.1134/S002247662302004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662302004X

Keywords

Navigation