Skip to main content
Log in

FEATURES OF THE CRYSTAL STRUCTURES OF THREE POLYMORPHS OF (RS,SR)-1-BENZYL- 3-(α,4-DICHLOROBENZYL)-3-HYDROXYINDOLIN-2-ONE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Three polymorphs of first synthesized (RS,SR)-3-(α,4-dichlorobenzyl)-3-hydroxyindolin-2-one are characterized by single crystal X-ray diffraction. Since the configuration of the 3-(α,4-dichloroоbenzyl)-3-hydroxyindolin-2-one fragment is identical in all three molecules, in one case, polymorphism is related to a conformational change due to a noticeable turn of the aromatic substituent of the molecule; in the second case, due to a change in the system of intermolecular interactions. The Hirshfeld surface analysis reveals distinctions in weak non-covalent interactions in the crystals of polymorphs. Despite that the hydrogen bonded motif is somewhat weaker in the 1b polymorph crystal, it is characterized by a closer crystal packing as compared to polymorphs 1a and 1c whose crystals have another type of the conformer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. J. E. M. N. Klein and R. J. K. Taylor. Transition-metal-mediated routes to 3,3-disubstituted oxindoles through anilide cyclisation. Eur. J. Org. Chem., 2011, 2011(34), 6821-6841. https://doi.org/10.1002/ejoc.201100836

    Article  CAS  Google Scholar 

  2. A. Millemaggi and R. J. K. Taylor. 3-Alkenyl-oxindoles: Natural products, pharmaceuticals, and recent synthetic advances in tandem/telescoped approaches. Eur. J. Org. Chem., 2010, 2010(24), 4527-4547. https://doi.org/10.1002/ejoc.201000643

    Article  CAS  Google Scholar 

  3. F. Zhou, Y.-L. Liu, and J. Zhou. Catalytic asymmetric synthesis of oxindoles bearing a tetrasubstituted stereocenter at the C-3 position. Adv. Synth. Catal., 2010, 352(9), 1381-1407. https://doi.org/10.1002/adsc.201000161

    Article  CAS  Google Scholar 

  4. B. Trost and M. Brennan. Asymmetric syntheses of oxindole and indole spirocyclic alkaloid natural products. Synthesis, 2009, 2009(18), 3003-3025. https://doi.org/10.1055/s-0029-1216975

    Article  CAS  Google Scholar 

  5. C. V. Galliford and K. A. Scheidt. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem., Int. Ed., 2007, 46(46), 8748-8758. https://doi.org/10.1002/anie.200701342

    Article  CAS  Google Scholar 

  6. C. Marti and E. M. Carreira. Construction of spiro[pyrrolidine-3,3-oxindoles] - recent applications to the synthesis of oxindole alkaloids. Eur. J. Org. Chem., 2003, 2003(12), 2209-2219. https://doi.org/10.1002/ejoc.200300050

    Article  CAS  Google Scholar 

  7. H. Lin and S. J. Danishefsky. Gelsemine: A thought-provoking target for total synthesis. Angew. Chem., Int. Ed., 2003, 42(1), 36-51. https://doi.org/10.1002/anie.200390048

    Article  CAS  Google Scholar 

  8. G. S. Singh and Z. Y. Desta. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem. Rev., 2012, 112(11), 6104-6155. https://doi.org/10.1021/cr300135y

    Article  CAS  PubMed  Google Scholar 

  9. K. Shen, X. Liu, L. Lin, and X. Feng. Recent progress in enantioselective synthesis of C3-functionalized oxindoles: rare earth metals take action. Chem. Sci., 2012, 3(2), 327-334. https://doi.org/10.1039/c1sc00544h

    Article  CAS  Google Scholar 

  10. R. Dalpozzo, G. Bartoli, and G. Bencivenni. Recent advances in organocatalytic methods for the synthesis of disubstituted 2- and 3-indolinones. Chem. Soc. Rev., 2012, 41(21), 7247. https://doi.org/10.1039/c2cs35100e

    Article  CAS  PubMed  Google Scholar 

  11. N. R. Ball-Jones, J. J. Badillo, and A. K. Franz. Strategies for the enantioselective synthesis of spirooxindoles. Org. Biomol. Chem., 2012, 10(27), 5165. https://doi.org/10.1039/c2ob25184a

    Article  CAS  PubMed  Google Scholar 

  12. L. Hong and R. Wang. Recent Advances in asymmetric organocatalytic construction of 3,3-spirocyclic oxindoles. Adv. Synth. Catal., 2013, 355(6), 1023-1052. https://doi.org/10.1002/adsc.201200808

    Article  CAS  Google Scholar 

  13. C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward. The cambridge structural database. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2016, 72(2), 171-179. https://doi.org/10.1107/s2052520616003954

    Article  CAS  Google Scholar 

  14. J. B. Nanubolu, K. Ravikumar, B. Sridhar, and B. Sreedhar. Conformational and crystal energetics of a polymorphic cyclized product of Napafenac: The Z and crystal stability correlation. J. Mol. Struct., 2014, 1078, 133-145. https://doi.org/10.1016/j.molstruc.2013.10.061

    Article  CAS  Google Scholar 

  15. W. Fu, F. Xu, Y. Fu, M. Zhu, J. Yu, C. Xu, and D. Zou. Synthesis of 3,3-disubstituted oxindoles by visible-light-mediated radical reactions of aryl diazonium salts with N-arylacrylamides. J. Org. Chem., 2013, 78(23), 12202-12206. https://doi.org/10.1021/jo401894b

    Article  CAS  PubMed  Google Scholar 

  16. D. Susanti, L. L. R. Ng, and P. W. H. Chan. Silica gel-mediated hydroamination/semipinacol rearrangement of 2-alkylaminophenylprop-1-yn-3-ols: synthesis of 2-oxindoles from alkynes and 1-(2-aminophenyl) ketones. Adv. Synth. Catal., 2014, 356(2/3), 353-358. https://doi.org/10.1002/adsc.201300911

    Article  CAS  Google Scholar 

  17. H. T. Flakus and B. Hachuła. Polarized IR spectra of the hydrogen bond in two different oxindole polymorphs with cyclic dimers in their lattices. J. Phys. Chem. A, 2011, 115(44), 12150-12160. https://doi.org/10.1021/jp206073v

    Article  CAS  PubMed  Google Scholar 

  18. B. Hachuła, M. Zubko, P. Zajdel, M. Książek, J. Kusz, O. Starczewska, J. Janek, and W. Pisarski. Polymorphs of oxindole as the core structures in bioactive compounds. CrystEngComm, 2018, 20(12), 1739-1745. https://doi.org/10.1039/c7ce01237c

    Article  CAS  Google Scholar 

  19. J. Bernstein. Polymorphism in Molecular Crystals. Oxford University Press, 2002.

  20. D. P. Gerasimova, A. F. Saifina, D. V. Zakharychev, I. I. Vandyukova, R. R. Fayzullin, A. R. Kurbangalieva, and O. A. Lodochnikova. Packing polymorphism on the example of 5-hydroxy-1-(4-methylbenzyl)-3-chloro-4-[(4-chlorophenyl)sulfanyl]-1,5-dihydro-2H-pyrrol-2-one: A crystallographic, thermochemical, and spectroscopic study. J. Struct. Chem., 2020, 61(3), 476-488. https://doi.org/10.1134/s0022476620030142

    Article  CAS  Google Scholar 

  21. O. A. Lodochnikova, A. V. Bodrov, A. F. Saifina, L. E. Nikitina, and I. A. Litvinov. A new polymorph of methimazole: Single crystal and powder X-ray diffraction study. J. Struct. Chem., 2013, 54(1), 140-147. https://doi.org/10.1134/s0022476613010204

    Article  CAS  Google Scholar 

  22. APEX2 (Version 2.1), SAINTPlus: Data reduction and correction program (Version 7.31A). Madison, WI, USA: Bruker AXS, 2006.

  23. G. M. Sheldrick. SADABS: Program for empirical X-ray absorption correction. Delft, Netherlands: Bruker-Nonius, 2004.

  24. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  25. A. L. Spek. Structure validation in chemical crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, 65(2), 148-155. https://doi.org/10.1107/s090744490804362x

    Article  CAS  Google Scholar 

  26. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, and P. A. Wood. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr., 2020, 53(1), 226-235. https://doi.org/10.1107/s1600576719014092

    Article  CAS  Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision D 0.1. Wallingford, CT: Gaussian, Inc., 2009.

  28. M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. CrystalExplorer17. University of Western Australia, 2017.

  29. S. P. Thomas, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. Accurate lattice energies for molecular crystals from experimental crystal structures. J. Chem. Theory Comput., 2018, 14(3), 1614-1623. https://doi.org/10.1021/acs.jctc.7b01200

    Article  CAS  PubMed  Google Scholar 

  30. V. A. Mamedov, V. L. Mamedova, S. F. Kadyrova, V. R. Galimullina, G. Z. Khikmatova, D. E. Korshin, A. T. Gubaidullin, D. B. Krivolapov, I. K. Rizvanov, O. B. Bazanova, O. G. Sinyashin, and S. K. Latypov. Synthesis of 3-hydroxy-4-arylquinolin-2-ones including viridicatol via a Darzens condensation/Friedel-Crafts alkylation strategy. J. Org. Chem., 2018, 83(21), 13132-13145. https://doi.org/10.1021/acs.joc.8b01871

    Article  CAS  PubMed  Google Scholar 

  31. V. A. Mamedov, V. L. Mamedova, Z.-W. Qu, H. Zhu, V. R. Galimullina, D. E. Korshin, G. Z. Khikmatova, I. A. Litvinov, S. K. Latypov, O. G. Sinyashin, and S. Grimme. Synthesis and mechanistic insights of the formation of 3-hydroxyquinolin-2-ones including viridicatin from 2-chloro-N,3-diaryloxirane-2-carboxamides under acid-catalyzed rearrangements. J. Org. Chem., 2021, 86(19), 13514-13534. https://doi.org/10.1021/acs.joc.1c01592

    Article  CAS  PubMed  Google Scholar 

  32. V. A. Mamedov, V. R. Galimullina, S. F. Kadyrova, I. K. Rizvanov, and S. K. Latypov. A concise synthesis of indolin-2-ones via direct acid-catalyzed intramolecular Friedel-Crafts alkylation of 3-chloro-N-(substituted)-2-oxo-N,3-diarylpropanamides. Tetrahedron Lett., 2022, 99, 153797. https://doi.org/10.1016/j.tetlet.2022.153797

    Article  CAS  Google Scholar 

  33. A. I. Kitajgorodskij. Molecular Crystals and Molecules. New York, London: Academic Press, 1973.

Download references

Funding

The work was supported by the Russian Science Foundation (grant No. 22-23-00570).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Samigullina.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 2, 105403.https://doi.org/10.26902/JSC_id105403

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samigullina, A.I., Galimullina, V.R., Kadyrova, S.F. et al. FEATURES OF THE CRYSTAL STRUCTURES OF THREE POLYMORPHS OF (RS,SR)-1-BENZYL- 3-(α,4-DICHLOROBENZYL)-3-HYDROXYINDOLIN-2-ONE. J Struct Chem 64, 179–189 (2023). https://doi.org/10.1134/S0022476623020026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623020026

Keywords

Navigation