Skip to main content
Log in

FIRST EXAMPLE OF RUTHENIUM NITROSO COMPLEXES WITH A NITROXYL RADICAL AS A LIGAND

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

First example of a nitrosoruthenium complex with a nitroxyl radical is prepared by the interaction of Na2RuNOCl5 with 2-(3-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-l-H-imidazole-1-oxyl-3-N-oxide (L) in acetonitrile at 85°C. The reaction product is the Na[RuNOCl4L] monosubstituted complex where the nitroxyl radical is coordinated by the nitrogen atom of the pyridine ring and occupies a cis position with respect to the nitroso group. The EPR data show that the spin density distribution in the radical almost does not change upon the coordination. The combination of electronic spectroscopy and density functional theory (DFT) data show that transitions at 500-700 nm are determined by the intraligand electron transfer in the nitroxide radical and by the electron transfer from the nitroxyl radical to the orbitals of the Ru–NO fragment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. P. Coppens, I. Novozhilova, and A. Kovalevsky. Photoinduced linkage isomers of transition-metal nitrosyl compounds and related complexes. Chem. Rev., 2002, 102(4), 861-884. https://doi.org/10.1021/cr000031c

    Article  CAS  PubMed  Google Scholar 

  2. D. Awasabisah and G. B. Richter-Addo. Chapter One - NOx Linkage Isomerization in Metal Complexes. In: NOx Related Chemistry / Eds. R. van Eldik, J.A. Olabe: Advances in Inorganic Chemistry, Vol. 67. Academic Press, 2015, 1-86. https://doi.org/10.1016/bs.adioch.2014.11.003

    Chapter  Google Scholar 

  3. A. A. Mikhailov, E. Wenger, G. A. Kostin, and D. Schaniel. Room-temperature photogeneration of nitrosyl linkage isomers in ruthenium nitrosyl complexes. Chem. – Eur. J., 2019, 25(31), 7569-7574. https://doi.org/10.1002/chem.201901205

    Article  CAS  PubMed  Google Scholar 

  4. A. A. Mikhailov, T. S. Sukhikh, N. V. Kuratieva, D. P. Pishchur, and G. A. Kostin. Remarkable thermal stability of light-induced Ru–ON linkage isomers in mixed salts of a ruthenium amine complex with a trans-ON–Ru–F coordinate. Dalton Trans., 2021, 50(8), 2864-2871. https://doi.org/10.1039/d0dt04323k

    Article  CAS  PubMed  Google Scholar 

  5. D. Schaniel, M. Imlau, T. Weisemoeller, T. Woike, K. W. Krämer, and H.-U. Güdel. Photoinduced nitrosyl linkage isomers uncover a variety of unconventional photorefractive media. Adv. Mater., 2007, 19(5), 723-726. https://doi.org/10.1002/adma.200601378

    Article  CAS  Google Scholar 

  6. M. Goulkov, D. Schaniel, and T. Woike. Pulse recording of thermal and linkage isomer gratings in nitrosyl compounds. J. Opt. Soc. Am. B, 2010, 27(5), 927. https://doi.org/10.1364/josab.27.000927

    Article  CAS  Google Scholar 

  7. T. Woike, W. Kirchner, G. Schetter, T. Barthel, K. Hyung-sang, and S. Haussühl. New information storage elements on the basis of metastable electronic states. Opt. Commun., 1994, 106(1-3), 6-10. https://doi.org/10.1016/0030-4018(94)90048-5

    Article  CAS  Google Scholar 

  8. R. B. Morgunov, A. I. Dmitriev, F. B. Mushenok, É. B. Yagubskiĭ, L. A. Kushch, A. R. Mustafina, V. A. Burilov, A. T. Gubaĭdullin, A. I. Konovalov, I. S. Antipin, and Y. Tanimoto. Photomagnetic effect in molecular magnets based on nitrosyl complexes of ruthenium and rare-earth ions. Phys. Solid State, 2009, 51(10), 2095-2100. https://doi.org/10.1134/s1063783409100175

    Article  CAS  Google Scholar 

  9. Z.-Z. Gu, O. Sato, T. Iyoda, K. Hashimoto, and A. Fujishima. Spin switching effect in nickel nitroprusside: design of a molecular spin device based on spin exchange interaction. Chem. Mater., 1997, 9(5), 1092-1097. https://doi.org/10.1021/cm9606383

    Article  CAS  Google Scholar 

  10. K. Q. Ferreira, J. F. Schneider, P. A. P. Nascente, U. P. Rodrigues-Filho, and E. Tfouni. Design of an NO photoinduced releaser xerogel based on the controlled nitric oxide donor trans-[Ru(NO)Cl(cyclam)](PF6)2 (cyclam = 1,4,8,11-tetraazacyclotetradecane). J. Colloid Interface Sci., 2006, 300(2), 543–552. https://doi.org/10.1016/j.jcis.2006.03.081

    Article  CAS  PubMed  Google Scholar 

  11. J. Bordini, P. C. Ford, and E. Tfouni. Photochemical release of nitric oxide from a regenerable, sol-gel encapsulated Ru–salen–nitrosyl complex. Chem. Commun., 2005, (33), 4169. https://doi.org/10.1039/b507407j

    Article  Google Scholar 

  12. E. Orlowska, M. V. Babak, O. Dömötör, E. A. Enyedy, P. Rapta, M. Zalibera, L. Bučinský, M. Malček, C. Govind, V. Karunakaran, Y. C. S. Farid, T. E. McDonnell, D. Luneau, D. Schaniel, W. H. Ang, and V. B. Arion. NO releasing and anticancer properties of octahedral ruthenium-nitrosyl complexes with equatorial 1H-indazole ligands. Inorg. Chem., 2018, 57(17), 10702-10717. https://doi.org/10.1021/acs.inorgchem.8b01341

    Article  CAS  PubMed  Google Scholar 

  13. A. A. Mikhailov, D. V. Khantakova, V. A. Nichiporenko, E. M. Glebov, V. P. Grivin, V. F. Plyusnin, V. V. Yanshole, D. V. Petrova, G. A. Kostin, and I. R. Grin. Photoinduced inhibition of DNA repair enzymes and the possible mechanism of photochemical transformations of the ruthenium nitrosyl complex [RuNO(-Pic)2(NO2)2OH]. Metallomics, 2019, 11(12), 1999-2009. https://doi.org/10.1039/c9mt00153k

    Article  CAS  PubMed  Google Scholar 

  14. I. A. Yakovlev, A. A. Mikhailov, J. A. Eremina, L. S. Klyushova, V. A. Nadolinny, and G. A. Kostin. Nitric oxide release and related light-induced cytotoxicity of ruthenium nitrosyls with coordinated nicotinate derivatives. Dalton Trans., 2021, 50(38), 13516-13527. https://doi.org/10.1039/d1dt02190g

    Article  CAS  PubMed  Google Scholar 

  15. S. Hasan, N. Thomas, B. Thierry, and C. A. Prestidge. Biodegradable nitric oxide precursor-loaded micro- and nanoparticles for the treatment of Staphylococcus aureus biofilms. J. Mater. Chem. B, 2017, 5(5), 1005-1014. https://doi.org/10.1039/c6tb03290g

    Article  CAS  PubMed  Google Scholar 

  16. J. C. Pieretti, M. T. Pelegrino, M. H. M. Nascimento, G. R. Tortella, O. Rubilar, and A. B. Seabra. Small molecules for great solutions: Can nitric oxide-releasing nanomaterials overcome drug resistance in chemotherapy? Biochem. Pharmacol., 2020, 176, 113740. https://doi.org/10.1016/j.bcp.2019.113740

    Article  CAS  PubMed  Google Scholar 

  17. E. Tfouni, D. R. Truzzi, A. Tavares, A. J. Gomes, L. E. Figueiredo, and D. W. Franco. Biological activity of ruthenium nitrosyl complexes. Nitric Oxide, 2012, 26(1), 38-53. https://doi.org/10.1016/j.niox.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  18. E. H. Silva Sousa, L. A. Ridnour, F. S. Gouveia, C. D. Silva da Silva, D. A. Wink, L. G. de França Lopes, and P. J. Sadler. Thiol-activated HNO release from a ruthenium antiangiogenesis complex and HIF-1 inhibition for cancer therapy. ACS Chem. Biol., 2016, 11(7), 2057-2065. https://doi.org/10.1021/acschembio.6b00222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. R. S. da Silva, R. G. de Lima, and S. de Paula Machado. Chapter Six - Design, Reactivity, and Biological Activity of Ruthenium Nitrosyl Complexes. In: NOx Related Chemistry / Eds. R. van Eldik and J. A. Olabe: Advances in Inorganic Chemistry, Vol. 67. Academic Press, 2015, 265-294. https://doi.org/10.1016/bs.adioch.2014.11.001

    Chapter  Google Scholar 

  20. R. de Lima, B. Silva, R. da Silva, and L. Bendhack. Ruthenium complexes as NO donors for vascular relaxation induction. Molecules, 2014, 19(7), 9628-9654. https://doi.org/10.3390/molecules19079628

    Article  CAS  PubMed  Google Scholar 

  21. M. M. Haugland, J. E. Lovett, and E. A. Anderson. Advances in the synthesis of nitroxide radicals for use in biomolecule spin labelling. Chem. Soc. Rev., 2018, 47(3), 668-680. https://doi.org/10.1039/c6cs00550k

    Article  CAS  PubMed  Google Scholar 

  22. E. Venditti, A. Scirè, F. Tanfani, L. Greci, and E. Damiani. Nitroxides are more efficient inhibitors of oxidative damage to calf skin collagen than antioxidant vitamins. Biochim. Biophys. Acta, Gen. Subj., 2008, 1780(1), 58-68. https://doi.org/10.1016/j.bbagen.2007.09.012

    Article  CAS  PubMed  Google Scholar 

  23. I. Ratera and J. Veciana. Playing with organic radicals as building blocks for functional molecular materials. Chem. Soc. Rev., 2012, 41(1), 303-349. https://doi.org/10.1039/c1cs15165g

    Article  CAS  PubMed  Google Scholar 

  24. E. V. Tretyakov and V. I. Ovcharenko. The chemistry of nitroxide radicals in the molecular design of magnets. Russ. Chem. Rev., 2009, 78(11), 971-1012. https://doi.org/10.1070/rc2009v078n11abeh004093

    Article  CAS  Google Scholar 

  25. V. Ovcharenko. Metal-Nitroxide Complexes: Synthesis and Magnetostructural Correlations. In: Stable Radicals. Chichester, UK: John Wiley & Sons, 2010, 461-506. https://doi.org/10.1002/9780470666975.ch13

    Chapter  Google Scholar 

  26. D. Luneau and P. Rey. Magnetism of metal-nitroxide compounds involving bis-chelating imidazole and benzimidazole substituted nitronyl nitroxide free radicals. Coord. Chem. Rev., 2005, 249(23), 2591-2611. https://doi.org/10.1016/j.ccr.2005.06.008

    Article  CAS  Google Scholar 

  27. S. V. Tumanov, S. L. Veber, S. E. Tolstikov, N. A. Artiukhova, V. I. Ovcharenko, and M. V. Fedin. Exchange interactions in photoinduced magnetostructural states of copper(II)-nitroxide spin dyads. Dalton Trans., 2020, 49(18), 5851-5858. https://doi.org/10.1039/d0dt00706d

    Article  CAS  PubMed  Google Scholar 

  28. I. A. Gass, S. Tewary, G. Rajaraman, M. Asadi, D. W. Lupton, B. Moubaraki, G. Chastanet, J.-F. Létard, and K. S. Murray. Solvate-dependent spin crossover and exchange in cobalt(II) oxazolidine nitroxide chelates. Inorg. Chem., 2014, 53(10), 5055-5066. https://doi.org/10.1021/ic5001057

    Article  CAS  PubMed  Google Scholar 

  29. V. Ovcharenko and E. Bagryanskaya. Breathing Crystals from Copper Nitroxyl Complexes. In: Spin-Crossover Materials. Oxford, UK: John Wiley & Sons, 2013, 239-280. https://doi.org/10.1002/9781118519301.ch9

    Chapter  Google Scholar 

  30. R. Sánchez-de-Armas, N. Cruz Hernández, and C. J. Calzado. Copper-nitroxide based breathing crystals: a unified mechanism of gradual magnetostructural transition supported by quantum chemistry calculations. Inorg. Chem. Front., 2019, 6(5), 1228-1237. https://doi.org/10.1039/c9qi00129h

    Article  CAS  Google Scholar 

  31. G. V. Romanenko, K. Y. Maryunina, A. S. Bogomyakov, R. Z. Sagdeev, and V. I. Ovcharenko. Relationship between the thermally induced reorientations of aromatic solvate molecules in Cu(hfac)2 - nitroxide breathing crystals and the character of the magnetic anomaly. Inorg. Chem., 2011, 50(14), 6597-6609. https://doi.org/10.1021/ic200444e

    Article  CAS  PubMed  Google Scholar 

  32. Y. Sayama, M. Handa, M. Mikuriya, I. Hiromitsu, and K. Kasuga. Structures and magnetic properties of ruthenium(II,III) pivalate cation dimers axially coordinated by pyridyl nitronyl nitroxide radicals through their pyridyl nitrogen atoms. Bull. Chem. Soc. Jpn., 2000, 73(11), 2499-2504. https://doi.org/10.1246/bcsj.73.2499

    Article  CAS  Google Scholar 

  33. M. Handa, Y. Sayama, M. Mikuriya, R. Nukada, I. Hiromitsu, and K. Kasuga. Structure and magnetic properties of a nitroxide diruthenium(II,III) complex, [Ru2(O2CCMe3)4(tempo)2][Ru2(O2CCMe3)4(H2O)2](BF4)2 (tempo = 2,2,6,6-tetramethylpiperidine-1-oxyl). Bull. Chem. Soc. Jpn., 1995, 68(6), 1647-1653. https://doi.org/10.1246/bcsj.68.1647

    Article  CAS  Google Scholar 

  34. M. Mikuriya, K. Tanaka, M. Handa, I. Hiromitsu, D. Yoshioka, and D. Luneau. Adduct complexes of ruthenium(II,III) propionate dimer with pyridyl nitroxides. Polyhedron, 2005, 24(16/17), 2658-2664. https://doi.org/10.1016/j.poly.2005.03.142

    Article  CAS  Google Scholar 

  35. A. Cogne, E. Belorizky, J. Laugier, and P. Rey. Nitroxide complexes of diruthenium(II,II) carboxylates. Structural and magnetic properties. Inorg. Chem., 1994, 33(15), 3364-3369. https://doi.org/10.1021/ic00093a027

    Article  CAS  Google Scholar 

  36. F. Pointillart, K. Bernot, L. Sorace, R. Sessoli, and D. Gatteschi. Ferromagnetic interactions in Ru(III)-nitronyl nitroxide radical complex: a potential 2p4d building block for molecular magnets. Dalton Trans., 2007, (25), 2689-2695. https://doi.org/10.1039/b701657c

    Article  PubMed  Google Scholar 

  37. J. W. Seyler, P. E. Fanwick, and C. R. Leidner. The chemistry of methyl(octaethylporphyrinato)ruthenium. A methyl to carbon monoxide transformation. Inorg. Chem., 1992, 31(18), 3699-3700. https://doi.org/10.1021/ic00044a008

    Article  CAS  Google Scholar 

  38. C. Sporer, H. Heise, K. Wurst, D. Ruiz-Molina, H. Kopacka, P. Jaitner, F. Köhler, J. J. Novoa, and J. Veciana. Magneto-structural characterization of metallocene-bridged nitronyl nitroxide diradicals by X-ray, magnetic measurements, solid-state NMR spectroscopy, and ab initio calculations. Chem. – Eur. J., 2004, 10(6), 1355-1365. https://doi.org/10.1002/chem.200305349

    Article  CAS  PubMed  Google Scholar 

  39. V. A. Emelyanov, S. A. Gromilov, I. A. Baidina, A. V. Virovets, A. V. Belyaev, and V. A. Logvinenko. Synthesis and crystal structure of Na2[RuNOCl56H2O. J. Struct. Chem., 1999, 40(6), 883-891. https://doi.org/10.1007/bf02700696

    Article  Google Scholar 

  40. S. E. Tolstikov, N. A. Artiukhova, G. V. Romanenko, A. S. Bogomyakov, E. M. Zueva, I. Y. Barskaya, M. V. Fedin, K. Y. Maryunina, E. V. Tretyakov, R. Z. Sagdeev, and V. I. Ovcharenko. Heterospin complex showing spin transition at room temperature. Polyhedron, 2015, 100, 132-138. https://doi.org/10.1016/j.poly.2015.07.029

    Article  CAS  Google Scholar 

  41. J. Zhang, M. Zhao, G. Cui, and S. Peng. A class of novel nitronyl nitroxide labeling basic and acidic amino acids: Synthesis, application for preparing ESR optionally labeling peptides, and bioactivity investigations. Bioorg. Med. Chem., 2008, 16(7), 4019-4028. https://doi.org/10.1016/j.bmc.2008.01.022

    Article  CAS  Google Scholar 

  42. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  43. G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, and T. Ziegler. Chemistry with ADF. J. Comput. Chem., 2001, 22(9), 931-967. https://doi.org/10.1002/jcc.1056

    Article  CAS  Google Scholar 

  44. K. Kim and K. D. Jordan. Comparison of density functional and MP2 calculations on the water monomer and dimer. J. Phys. Chem., 1994, 98(40), 10089-10094. https://doi.org/10.1021/j100091a024

    Article  CAS  Google Scholar 

  45. E. Van Lenthe and E. J. Baerends. Optimized Slater-type basis sets for the elements 1-118. J. Comput. Chem., 2003, 24(9), 1142-1156. https://doi.org/10.1002/jcc.10255

    Article  CAS  PubMed  Google Scholar 

  46. E. van Lenthe, E. J. Baerends, and J. G. Snijders. Relativistic regular two-component Hamiltonians. J. Chem. Phys., 1993, 99(6), 4597-4610. https://doi.org/10.1063/1.466059

    Article  Google Scholar 

  47. S. Wang, S. I. Sandler, and C.-C. Chen. Refinement of COSMO-SAC and the applications. Ind. Eng. Chem. Res., 2007, 46(22), 7275-7288. https://doi.org/10.1021/ie070465z

    Article  CAS  Google Scholar 

  48. A. N. Makhinya, M. A. Ilin, I. A. Baidina, P. E. Plyusnin, and M. R. Gallyamov. Structure and properties of tripyridine nitrosocomplexes of ruthenium: mer-[Ru(NO)Py3Cl(OH)]Cl1.5H2O and mer-[Ru(NO)Py3Cl(H2O)]Cl22H2O0.5HCl. J. Struct. Chem., 2014, 55(4), 682-690. https://doi.org/10.1134/s0022476614040131

    Article  CAS  Google Scholar 

  49. A. N. Makhinya, M. A. Ilin, R. D. Yamaletdinov, I. V. Korolkov, and I. A. Baidina. Synthesis and crystal structure of nitrosoruthenium complexes cis-[Ru(NO)Py2Cl2(OH)] and cis-[Ru(NO)Py2Cl2(H2O)]Cl. Photoinduced transformations of cis-[Ru(NO)Py2Cl2(OH)]. New J. Chem., 2016, 40(12), 10267-10273. https://doi.org/10.1039/c6nj02425d

    Article  CAS  Google Scholar 

  50. E. D. Rechitskaya, N. V. Kuratieva, E. V. Lider, J. A. Eremina, L. S. Klyushova, I. V. Eltsov, and G. A. Kostin. Tuning of cytotoxic activity by bio-mimetic ligands in ruthenium nitrosyl complexes. J. Mol. Struct., 2020, 1219, 128565. https://doi.org/10.1016/j.molstruc.2020.128565

    Article  CAS  Google Scholar 

  51. E. D. Stolyarova, A. A. Mikhailov, A. A. Ulantikov, J. A. Eremina, L. S. Klyushova, N. V. Kuratieva, V. A. Nadolinny, and G. A. Kostin. Blue-to-red light triggered nitric oxide release in cytotoxic/cytostatic ruthenium nitrosyl complexes bearing biomimetic ligands. J. Photochem. Photobiol., A, 2021, 421, 113520. https://doi.org/10.1016/j.jphotochem.2021.113520

    Article  CAS  Google Scholar 

  52. S. T. Liddle and W. Clegg. A homologous series of crown-ether-complexed alkali metal amides as discrete ion-pair species: synthesis and structures of [M(12-crown-4)2][PyNPhPyN(H)Ph] (M = Li, Na and K). Polyhedron, 2003, 22(27), 3507-3513. https://doi.org/10.1016/j.poly.2003.09.011

    Article  CAS  Google Scholar 

  53. R. Weller, I. Müller, C. Duhayon, S. Sabo-Etienne, S. Bontemps, and C. G. Werncke. Quasilinear 3d-metal(I) complexes [KM(N(Dipp)SiR3)2] (M = Cr–Co) - structural diversity, solution state behaviour and reactivity. Dalton Trans., 2021, 50(14), 4890-4903. https://doi.org/10.1039/d1dt00121c

    Article  CAS  PubMed  Google Scholar 

  54. P. Liebing, M. Schmeide, M. Kühling, and J. Witzorke. The alkali metal salts of methyl xanthic acid. Eur. J. Inorg. Chem., 2020, 2020(25), 2428-2434. https://doi.org/10.1002/ejic.202000258

    Article  CAS  Google Scholar 

  55. V. Romanov, I. Bagryanskaya, D. Gorbunov, N. Gritsan, E. Zaytseva, D. Luneau, and E. Tretyakov. A crystallographic study of a novel tetrazolyl-substituted nitronyl nitroxide radical. Crystals, 2018, 8(9), 334. https://doi.org/10.3390/cryst8090334

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation, project 22-23-00407 (synthesis, X-ray diffraction analysis, and quantum chemical calculations) and by the Ministry of Education and Science of the Russian Federation, project 121031700315-2 (EPR experiment and EPR spectra simulations).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Kostin.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 2, 105395.https://doi.org/10.26902/JSC_id105395

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostin, G.A., Tolstikov, S.E., Kuratieva, N.V. et al. FIRST EXAMPLE OF RUTHENIUM NITROSO COMPLEXES WITH A NITROXYL RADICAL AS A LIGAND. J Struct Chem 64, 169–178 (2023). https://doi.org/10.1134/S0022476623020014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623020014

Keywords

Navigation