Skip to main content
Log in

COMPARATIVE CRYSTAL CHEMISTRY, SYMMETRY FEATURES, AND STRUCTURAL COMPLEXITY OF LiOH, NaOH, RbOH, CsOH, AND TlOH HYDROXIDES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

We consider the structural features and symmetry of alkali metal (Li, Na, K, Rb, Cs) and thallium hydroxides crystallizing in LiOH, α-NaOH, β-NaOH, TlOH structure types. The complexities of crystal structures are calculated. The structure of these compounds is based on the alternation of dense layers with strong metal–oxygen bonds and the interlayer space. The common features of hydroxide structures is the location of atoms at square network nodes. Atoms are bound the networks by both true symmetry elements of space groups and additional pseudo-symmetry elements, which indicates the order-disorder (OD) character of hydroxide structures. The arrangement of atoms by the square network pattern allows the consideration of these compounds as a uniform group whose structures retain the tetragonal character of the initial LiOH structure, which is expressed in the similarity of horizontal parameters of their unit cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. A. K. Ivanov-Schitz and I. V. Murin. Ionika tverdogo tela (Solid-State Ionics). St. Petersburg: St. Petersburg State University, 2000. [In Russian]

  2. O. V. Bushkova, T. V. Yaroslavtseva, and Yu. A. Dobrovolsky. Russ. J. Electrochem., 2017, 53, 677. https://doi.org/10.1134/S1023193517070035

    Article  Google Scholar 

  3. K. Xu. Chem. Rev., 2014, 114, 11503. https://doi.org/10.1021/cr500003w

    Article  Google Scholar 

  4. A. B. Yaroslavtsev. Russ. Chem. Rev., 2016, 84, 1255. https://doi.org/10.1070/RCR4634

    Article  Google Scholar 

  5. D. A. Boryta and A. J. Maas. Ind. Eng. Chem. Process Des. Dev., 1971, 10, 489. https://doi.org/10.1021/i260040a011

    Article  Google Scholar 

  6. G. G. Vurek, D. G. Warnock, and R. Corsey. Anal. Chem., 1975, 47, 765. https://doi.org/10.1021/ac60354a024

    Article  Google Scholar 

  7. L. Schlapbach and A. Züttel. Nature. 2001, 414, 353. https://doi.org/10.1038/35104634

    Article  Google Scholar 

  8. T. K. Mandal and D. H. Gregory. Ann. Rep. Prog. Chem., Sect. A: Inorg. Chem., 2009, 105, 21. https://doi.org/10.1039/b818951j

    Article  Google Scholar 

  9. J. F. Mao, Q. Gu, and D. H. Gregory. Materials. 2015, 8, 2191. https://doi.org/10.3390/ma8052191

    Article  Google Scholar 

  10. T. Ernst. Z. Phys. Chem., Abt. B, 1933, 20, 65. https://doi.org/10.1515/zpch-1933-2006

    Article  Google Scholar 

  11. H. Dachs. Z. Kristallogr. – Cryst. Mater., 1959, 112, 60. https://doi.org/10.1524/zkri.1959.112.jg.60

    Article  Google Scholar 

  12. S. L. Mair. Acta Crystallogr., Sect. A, 1978, 34, 542. https://doi.org/10.1107/S0567739478001151

    Article  Google Scholar 

  13. H. Jacobs, J. Kockelkorn, and T. Tacke. Z. Anorg. Allg. Chem., 1985, 531, 119. https://doi.org/10.1002/zaac.19855311217

    Article  Google Scholar 

  14. H. Stehr. Z. Kristallogr. – Cryst. Mater., 1967, 125, 332. https://doi.org/10.1524/zkri.1967.125.125.332

    Article  Google Scholar 

  15. H.-J. Bleif and H. Dachs. Acta Crystallogr., Sect. A, 1982, 38, 470. https://doi.org/10.1107/S0567739482001028

    Article  Google Scholar 

  16. T. Ernst. Angew. Chem., 1948, 60, 77. https://doi.org/10.1002/ange.19480600308

    Article  Google Scholar 

  17. M. Wörsching and C. Hoch. Z. Naturforsch. B, 2014, 69, 1229. https://doi.org/10.5560/znb.2014-4163

    Article  Google Scholar 

  18. H. Jacobs and B. Harbrecht. Z. Naturforsch. B, 1981, 36, 270. https://doi.org/10.1515/znb-1981-0228

    Article  Google Scholar 

  19. A. Hermann. Phys. Chem. Chem. Phys., 2016, 18, 16527. https://doi.org/10.1039/C6CP03203F

    Article  Google Scholar 

  20. H. P. Beck and G. Lederer. Angew. Chem., 1993, 105, 292. https://doi.org/10.1002/ange.19931050230

    Article  Google Scholar 

  21. H. P. Beck and G. Lederer. J. Chem. Phys., 1993, 98, 7289. https://doi.org/10.1063/1.464721

    Article  Google Scholar 

  22. A. Hermann, N. Ashcroft, and R. Hoffman. J. Chem. Phys., 2014, 141, 024505. https://doi.org/10.1063/1.4886335

    Article  Google Scholar 

  23. O. I. Siidra, S. N. Britvin, S. V. Krivovichev, and W. Depmeier. Z. Anorg. Allg. Chem., 2010, 636, 595. https://doi.org/10.1002/zaac.200900367

    Article  Google Scholar 

  24. S. Krivovichev. Acta Crystallogr., Sect. A, 2012, 68, 393. https://doi.org/10.1107/S0108767312012044

    Article  Google Scholar 

  25. S. V. Krivovichev. Z. Kristallogr., 2018, 233, 155. https://doi.org/10.1515/zkri-2017-2117

    Article  Google Scholar 

  26. V. V. Gurzhiy and J. Plasil. Acta Crystallogr., Sect. B, 2019, 75, 39. https://doi.org/10.1107/S2052520618016098

    Article  Google Scholar 

  27. W. Hornfeck. Acta Crystallogr., Sect. A, 2020, 76, 534. https://doi.org/10.1107/S2053273320006634

    Article  Google Scholar 

  28. I. Csiszár. Entropy, 2008, 10(3), 261. https://doi.org/10.3390/e10030261

    Article  Google Scholar 

  29. A. M. Banaru, S. M. Aksenov, and S. V. Krivovichev. Symmetry, 2021, 13, 1399. https://doi.org/10.3390/sym13081399

    Article  Google Scholar 

  30. A. M. Banaru and S. M. Aksenov. Symmetry, 2022, 14, 220. https://doi.org/10.3390/sym14020220

    Article  Google Scholar 

  31. V. A. Blatov, A. P. Shevchenko, and D. M. Proserpio. Cryst. Growth Des., 2014, 14, 3576. https://doi.org/10.1021/cg500498k

    Article  Google Scholar 

  32. M. OKeeffe, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi. Acc. Chem. Res., 2008, 41, 1782. https://doi.org/10.1021/ar800124u

    Article  Google Scholar 

  33. TopCryst: The Samara Topological Data Center, https://topcryst.com/.

  34. V. A. Blatov, M. OKeeffe, and D. M. Proserpio. CrystEngComm, 2010, 12, 44. https://doi.org/10.1039/B910671E

    Article  Google Scholar 

  35. R. D. Shannon. Acta Crystallogr., Sect. A, 1976, 32, 751. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  36. D. C. Ghosh and R. Biswas. Int. J. Mol. Sci., 2003, 4, 379. https://doi.org/10.3390/i4060379

    Article  Google Scholar 

Download references

Funding

The work was supported by Russian Science Foundation grant No. 20-77-10065 (symmetry features and polytypism - A. M. Banaru and S. M. Aksenov) and the State Assignment for the Vernadsky Institute of Ceochemistry and Analytical Chemistry, Russian Academy of Sciences (calculation of information indices - D.A. Banaru) and the Kola Science Center, Russian Academy of Sciences, No. 122011300125-2 (A. M. Banaru and S. M. Aksenov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Aksenov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 12, 103704.https://doi.org/10.26902/JSC_id103704

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamnova, N.A., Banaru, D.A., Banaru, A.M. et al. COMPARATIVE CRYSTAL CHEMISTRY, SYMMETRY FEATURES, AND STRUCTURAL COMPLEXITY OF LiOH, NaOH, RbOH, CsOH, AND TlOH HYDROXIDES. J Struct Chem 63, 2054–2067 (2022). https://doi.org/10.1134/S0022476622120174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622120174

Keywords

Navigation