Skip to main content
Log in

KINETICS AND MECHANISM OF A SELF- OSCILATION REACTION OF KEPLERATE-TYPE POLYOXOMOLIBDATE DEGRADATION IN AN AQUEOUS SOLUTION

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Mechanism of the \(\{\text{M}{{\text{o}}_{\text{132}}}\}~=~{{(\text{N}{{\text{H}}_{\text{4}}})}_{\text{42}}}[\text{Mo}_{72}^{\text{VI}}\text{Mo}_{60}^{\text{V}}{{\text{O}}_{\text{372}}}{{(\text{C}{{\text{H}}_{\text{3}}}\text{COO})}_{\text{3}0}}{{({{\text{H}}_{\text{2}}}\text{O})}_{\text{72}}}]\)(~300H2O)·(~10CH3 COONH4) polyoxomolybdate degradation in an aqueous solution is proposed and substantiated for the time using kinetic modeling. The mechanism includes four stages: I) non-catalytic cleavage of the Mo–O bond between the polyoxomolybdate fragments; II) recovery of the bonds between the polyoxomolybdate fragments; III) catalytic cleavage of the Mo–O bond between the polyoxomolybdate fragments; IV) increase of O2 concentration due to the decay of the conjugate pair \(\text{O}_{2}^{\bullet -}/\text{HO}{{\text{O}}^{\bullet }}\) releasing the oxygen molecule and due to O2 diffusion from the gas phase into the polyoxomolybdate aqueous solution. A kinetic model of the considered process is proposed. It is shown that bond recovery prevails over bond cleavage in the polyoxomolybdate due to low residual O2 concentration in the solution. At the same time, increasing the O2 concentration in the solution up to some “critical” value restarts the avalanche-like autocatalytic process of Mo–O bond cleavage in the polyoxomolybdate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

Notes

  1. * Hereinafter, POM structures inside the curly brackets {} are shown in a simplified form showing only the metal atoms in the POM composition.

  2. ** This polyoxomolybdate is referred to below as {Mo132} and is assumed to appear in an aqueous solution; the aqueous solution of {Mo132} is referred to below simply as "solution".

  3. * Strictly speaking, each {Mo2} is connected to the cluster by two chemical bonds; therefore, these are not chemical bonds, but bonds in {Mo132} represented by a graph.

  4. * The mechanism is described in terms of “stages” rather than in terms of “reactions”, because, firstly, each stage consists of several successive reactions, and secondly, the stage (IV) is partially non-chemical in nature.

REFERENCES

  1. A. Ostroushko, I. Gagarin, K. Grzhegorzhevskii, I. Gette, D. Vlasov, A. Ermoshin, and I. Danilova. J. Mol. Liq., 2019, 110910. https://doi.org/10.1016/j.molliq.2019.110910

    Article  CAS  Google Scholar 

  2. A. Rezaeifard, R. Mokhtari, Z. Garazhian, M. Jafarpour, and K. Grzhegorzhevskii. Inorg. Chem., 2022, 61(20), 7878-7889. https://doi.org/10.1021/acs.inorgchem.2c00476

    Article  CAS  Google Scholar 

  3. S. Mouanni, D. Amitouche, T. Mazari, and C. Rabia. Appl. Petrochem. Res., 2019, 9(2), 67-75. https://doi.org/10.1007/s13203-019-0226-0

    Article  CAS  Google Scholar 

  4. Y. Zhou, G. Chen, Z. Long, and J. Wang. RSC Adv., 2014, 4(79), 42092-42113. https://doi.org/10.1039/C4RA05175K

    Article  CAS  Google Scholar 

  5. S. Ishikawa, Z. Zhang, and W. Ueda. ACS Catal., 2018, 8(4), 2935-2943, https://doi.org/10.1021/acscatal.7b02244

    Article  CAS  Google Scholar 

  6. K. Shimoda, S. Ishikawa, M. Tashiro, M. Kumaki, N. Hiyoshi, and W. Ueda. Inorg. Chem., 2020, 59(8), https://doi.org/10.1021/acs.inorgchem.9b03713

    Article  CAS  Google Scholar 

  7. A. Rezaeifard, M. Jafarpour, R. Haddad, H. Tavallaei, and M. Hakimi. J. Clust. Sci., 2015, 26(5), 1439-1450. https://doi.org/10.1007/s10876-015-0876-8

    Article  CAS  Google Scholar 

  8. A. Rezaeifard, R. Haddad, M. Jafarpour, and M. Hakimi. J. Am. Chem. Soc., 2013, 135(27), 10036-10039. https://doi.org/10.1021/ja405852s

    Article  CAS  Google Scholar 

  9. F. Jalilian, B. Yadollahi, M. Farsani, S. Tangestaninejad, H. Rudbari, and R. Habibi. RSC Adv., 2015, 5(86), 70424-70428. https://doi.org/10.1039/C5RA12488C

    Article  CAS  Google Scholar 

  10. R. Mokhtari, A. Rezaeifard, M. Jafarpour, and A. Farrokh. Catal. Sci. Technol., 2018, 8(18), 4645-4656. https://doi.org/10.1039/C8CY00603B

    Article  CAS  Google Scholar 

  11. Z. Garazhian, A. Rezaeifard, and M. Jafarpour. RSC Adv., 2019, 9(60), 34854-34861. https://doi.org/10.1039/C9RA06581D

    Article  CAS  Google Scholar 

  12. A. Davoodnia and A. Nakhaei. Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2016, 46(7), 1073-1080. https://doi.org/10.1080/15533174.2015.1004419

    Article  CAS  Google Scholar 

  13. A. Panagiotopoulos, A. Douvas, P. Argitis, and A. Coutsolelos. ChemSusChem, 2016, 9(22), 3213-3219. https://doi.org/10.1002/cssc.201600995

    Article  CAS  Google Scholar 

  14. F. Jalilian, B. Yadollahi, M. Farsani, S. Tangestaninejad, H. Rudbari, and R. Habibi. Catal. Commun., 2015, 66, 107-110. https://doi.org/10.1016/j.catcom.2015.03.032

    Article  CAS  Google Scholar 

  15. Z. Garazhian, A. Rezaeifard, M. Jafarpour, and A. Farrokhi. ACS Appl. Nano Mater., 2020, 3(1), 648-657. https://doi.org/10.1021/acsanm.9b02174

    Article  CAS  Google Scholar 

  16. Y. Zhou, L. Qin, C. Yu, T. Xiong, L. Zhang, W. Ahmad, and H. Han. RSC Adv., 2014, 4(97), 54928-54935. https://doi.org/10.1039/C4RA07700H

    Article  CAS  Google Scholar 

  17. D. Fan and J. Hao. J. Colloid Interface Sci., 2009, 333(2), 757-763. https://doi.org/10.1016/j.jcis.2009.01.034

    Article  CAS  Google Scholar 

  18. A. Müller, S. Sarkar, S. Shah, H. Bögge, M. Schmidtmann, S. Sarkar, and V. Schünemann. Angew. Chem., Int. Ed. Engl., 1999, 38(21), 3238-3241. https://doi.org/10.1002/(sici)1521-3773(19991102)38:21<3238::aid-anie3238>3.0.co;2-6

    Article  Google Scholar 

  19. A. Müller, E. Krickemeyer, J. Meyer, H. Bögge, F. Peters, W. Plass, and C. Menke. Angew. Chem., Int. Ed. Engl., 1995, 34(19), 2122-2124. https://doi.org/10.1002/anie.199521221

    Article  Google Scholar 

  20. A. Müller, E. Beckmann, H. Bögge, M. Schmidtmann, and A. Dress. Inorg. Chem., 2002, 41(7), 1162-1167. https://doi.org/10.1002/1521-3773(20020402)41:7<1162::aid-anie1162>3.0.co;2-8

    Article  Google Scholar 

  21. K. Grzhegorzhevskii, N. Shevtsev, A. Abushaeva, D. Chezganov, and A. Ostroushko. Russ. Chem. Bull., 2020, 69(4), 804–814. https://doi.org/10.1007/s11172-020-2836-1

    Article  CAS  Google Scholar 

  22. B. Kowalewski, J. Poppe, U. Demmer, E. Warkentin, T. Dierks, U. Ermler, and K. Schneider. J. Am. Chem. Soc., 2012, 134(23), 9768-9774. https://doi.org/10.1021/ja303084n

    Article  CAS  Google Scholar 

  23. G. Marin, G. Yablonsky, and D. Constales. Kinetics of Chemical Reactions - Decoding Complexity, 2nd ed. Wiley-VCH, 2019. https://doi.org/10.1002/9783527808397

    Book  Google Scholar 

  24. H. Kielhöfer. Bifurcation Theory: An Introduction with Applications to Partial Differential Equations: Applied Mathematical Sciences, Vol. 156. Springer, 2012. https://doi.org/10.1007/978-1-4614-0502-3

    Book  Google Scholar 

  25. A. Müller, E. Krickemeyer, H. Bögge, M. Schmidtmann, and F. Peters. Angew. Chem., Int. Ed. Engl., 1998, 37, 3359-3363. https://doi.org/10.1002/(SICI)1521-3773(19981231)37:24<3359::AID-ANIE3359>3.0.CO;2-J

    Article  Google Scholar 

  26. K. Grzhegorzhevskii, P. Zelenovskiy, O. Koryakova, and A. Ostroushko. Inorg. Chim. Acta, 2019, 489, 287-300. https://doi.org/10.1016/j.ica.2019.01.016

    Article  CAS  Google Scholar 

  27. T. Yamase. Chem. Rev., 1998, 98(1), 307-326. https://doi.org/10.1021/cr9604043

    Article  CAS  Google Scholar 

  28. C. Schäffer, A. Todea, P. Gouzerh, and A. Müller. Chem. Commun., 2012, 48, 350-352. https://doi.org/10.1039/c1cc15907k

    Article  CAS  Google Scholar 

  29. A. Müller, S. Polarz, S. Das, E. Krickemeyer, H. Bögge, M. Schmidtmann, and B. Hauptfleisch. Angew. Chem., Int. Ed., 1999, 38(21), 3241-3245. https://doi.org/10.1002/(sici)1521-3773(19991102)38:21<3241::aid-anie3241>3.0.co;2-9

    Article  Google Scholar 

  30. D. Melgar, N. Bandeira, J. Avalos, and C. Bo. Phys. Chem. Chem. Phys., 2017, 19(7), 5343-5350. https://doi.org/10.1039/c6cp08511c

    Article  CAS  Google Scholar 

  31. V. Korenev, P. Dorovatovskii, V. Lazarenko, P. Abramov, and M. Sokolov. CrystEngComm, 2022, 24, 321-329. https://doi.org/ 10.1039/d1ce01121a

    Article  CAS  Google Scholar 

  32. K. Tereshchenko, D. Shiyan, N. Ulitin, S. Kolesov, R. Deberdeev, and Kh. Kharlampidi. Chem. Eng. J., 2021, 433(6), 133537. https://doi.org/10.1016/j.cej.2021.133537

    Article  CAS  Google Scholar 

  33. A. Scheeline, D. Olson, E. Williksen, G. Horras, M. Klein, and R. Larter. Chem. Rev., 1997, 97(3), 739-756. https://doi.org/ 10.1021/CR960081A

    Article  CAS  Google Scholar 

  34. J. W. Peters and C. S. Foote. J. Am. Chem. Soc., 1976, 98(3), 873-875. https://doi.org/10.1021/ja00419a058

    Article  CAS  Google Scholar 

  35. M. Hayyan, M. Hashim, and I. AlNashef. Chem. Rev., 2016, 116(5), 3029-3085. https://doi.org/10.1021/acs.chemrev.5b00407

    Article  CAS  Google Scholar 

  36. L. Klimina, B. Lokshin, and V. Samsonov. J. Appl. Math. Mech., 2017, 81(6), 442-449. https://doi.org/10.1016/j.jappmathmech.2018.03.012

    Article  Google Scholar 

Download references

Funding

This work was funded by the Tatarstan Academy of Sciences (contract No. 05-47- yuG of 28.04.2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Tereshchenko.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 12, 103434.https://doi.org/10.26902/JSC_id103434

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshchenko, K.A., Shiyan, D.A., Grzhegorzhevskii, K.V. et al. KINETICS AND MECHANISM OF A SELF- OSCILATION REACTION OF KEPLERATE-TYPE POLYOXOMOLIBDATE DEGRADATION IN AN AQUEOUS SOLUTION. J Struct Chem 63, 2004–2019 (2022). https://doi.org/10.1134/S0022476622120125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622120125

Keywords

Navigation