Skip to main content
Log in

HALOGEN BOND IN POROUS MATERIALS: RATIONAL SELECTION OF BUILDING BLOCKS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The ability of a series of 20 halogen-substituted aromatic di-, tri-, and tetracarboxylic acids and 14 halogenated derivatives of 4,4′-bipyridyl to form a halogen bond is estimated by quantum chemical calculations. The comparison of surface electrostatic potentials provides the rational selection of building blocks to obtain the respective porous materials, in particular, metal-organic frameworks and porous organic salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. A. Sapianik and V. P. Fedin. Russ. J. Coord. Chem., 2020, 46(7), 443-457. https://doi.org/10.1134/s1070328420060093

    Article  CAS  Google Scholar 

  2. O. V. Kharissova, V. A. Zhinzhilo, M. A. Chernomorova, I. E. Uflyand, I. Gómez de , and B. I. Kharisov. Mendeleev Commun., 2021, 31(6), 893-895. https://doi.org/10.1016/j.mencom.2021.11.042

    Article  CAS  Google Scholar 

  3. A. A. Sapianik, I. A. Lutsenko, M. A. Kiskin, A. A. Sidorov, I. L. Eremenko, D. G. Samsonenko, D. N. Dybtsev, and V. P. Fedin. Russ. Chem. Bull., 2016, 65(11), 2601-2606. https://doi.org/10.1007/s11172-016-1624-4

    Article  CAS  Google Scholar 

  4. I. K. Rubtsova, S. N. Melnikov, M. A. Shmelev, S. A. Nikolaevskii, I. A. Yakushev, J. K. Voronina, E. D. Barabanova, M. A. Kiskin, A. A. Sidorov, and I. L. Eremenko. Mendeleev Commun., 2020, 30(6), 722-724. https://doi.org/10.1016/j.mencom.2020.11.011

    Article  CAS  Google Scholar 

  5. E. N. Zorina-Tikhonova, D. S. Yambulatov, M. A. Kiskin, E. S. Bazhina, S. A. Nikolaevskii, N. V. Gogoleva, I. A. Lutsenko, A. A. Sidorov, and I. L. Eremenko. Russ. J. Coord. Chem., 2020, 46(2), 75-80. https://doi.org/10.1134/s1070328420020104

    Article  CAS  Google Scholar 

  6. M. I. Rogovoy, A. S. Berezin, D. G. Samsonenko, and A. V. Artemev. Inorg. Chem., 2021, 60(9), 6680-6687. https://doi.org/10.1021/acs.inorgchem.1c00480

    Article  CAS  Google Scholar 

  7. M. I. Rogovoy, T. S. Frolova, D. G. Samsonenko, A. S. Berezin, I. Y. Bagryanskaya, N. A. Nedolya, O. A. Tarasova, V. P. Fedin, and A. V. Artemev. Eur. J. Inorg. Chem., 2020, 2020(17), 1635-1644. https://doi.org/10.1002/ejic.202000109

    Article  CAS  Google Scholar 

  8. A. V. Artemev and V. P. Fedin. Russ. J. Org. Chem., 2019, 55(6), 800-817. https://doi.org/10.1134/s1070428019060101

    Article  CAS  Google Scholar 

  9. M. I. Rogovoy, D. G. Samsonenko, M. I. Rakhmanova, and A. V. Artemev. Inorg. Chim. Acta, 2019, 489, 19-26. https://doi.org/10.1016/j.ica.2019.01.036

    Article  CAS  Google Scholar 

  10. O. Y. Trofimova, I. V. Ershova, A. V. Maleeva, I. A. Yakushev, P. V. Dorovatovskii, R. R. Aisin, and A. V. Piskunov. Russ. J. Coord. Chem., 2021, 47(9), 610-619. https://doi.org/10.1134/s1070328421090086

    Article  CAS  Google Scholar 

  11. V. A. Dubskikh, A. A. Lysova, D. G. Samsonenko, A. N. Lavrov, D. N. Dybtsev, and V. P. Fedin. Russ. J. Coord. Chem., 2021, 47(10), 664-669. https://doi.org/10.1134/s107032842110002x

    Article  CAS  Google Scholar 

  12. S.-Y. Ding and W. Wang. Chem. Soc. Rev., 2013, 42(2), 548-568. https://doi.org/10.1039/c2cs35072f

    Article  CAS  Google Scholar 

  13. X. Feng, X. Ding, and D. Jiang. Chem. Soc. Rev., 2012, 41(18), 6010. https://doi.org/10.1039/c2cs35157a

  14. S. Yu, G. Xing, L. Chen, T. Ben, and B. Su. Adv. Mater., 2020, 32(44), 2003270. https://doi.org/10.1002/adma.202003270

    Article  CAS  Google Scholar 

  15. G. Xing, T. Yan, S. Das, T. Ben, and S. Qiu. Angew. Chem., 2018, 130(19), 5443-5447. https://doi.org/10.1002/ange.201800423

    Article  Google Scholar 

  16. T. Hasegawa, K. Ohkubo, I. Hisaki, M. Miyata, N. Tohnai, and S. Fukuzumi. Chem. Commun., 2016, 52(51), 7928-7931. https://doi.org/10.1039/c6cc02377k

    Article  CAS  Google Scholar 

  17. A. Yamamoto, S. Uehara, T. Hamada, M. Miyata, I. Hisaki, and N. Tohnai. Cryst. Growth Des., 2012, 12(9), 4600-4606. https://doi.org/10.1021/cg300796u

    Article  CAS  Google Scholar 

  18. Y. Zhao, C. Fan, C. Pei, X. Geng, G. Xing, T. Ben, and S. Qiu. J. Am. Chem. Soc., 2020, 142(7), 3593-3599. https://doi.org/10.1021/jacs.9b13274

    Article  CAS  Google Scholar 

  19. C. Liu, T. Luo, A. M. Sheveleva, X. Han, X. Kang, S. Sapchenko, F. Tuna, E. J. L. McInnes, B. Han, S. Yang, and M. Schröder. Mater. Adv., 2021, 2(15), 5144-5149. https://doi.org/10.1039/d1ma00266j

    Article  CAS  Google Scholar 

  20. X. Y. Tan, J. Wang, C. Y. Rao, L. Lu, L. T. Wei, A. Q. Ma, and M. Muddassir. Russ. J. Coord. Chem., 2021, 47(4), 296-305. https://doi.org/10.1134/s1070328421040072

    Article  CAS  Google Scholar 

  21. Y. A. Belousov, V. E. Goncharenko, G. N. Bondarenko, O. G. Ganina, S. I. Bezzubov, and I. V. Taidakov. Russ. J. Coord. Chem., 2020, 46(12), 805-811. https://doi.org/10.1134/s1070328420080023

    Article  CAS  Google Scholar 

  22. L. J. Small, R. C. Hill, J. L. Krumhansl, M. E. Schindelholz, Z. Chen, K. W. Chapman, X. Zhang, S. Yang, M. Schröder, and T. M. Nenoff. ACS Appl. Mater. Interfaces, 2019, 11(31), 27982-27988. https://doi.org/10.1021/acsami.9b09938

    Article  CAS  Google Scholar 

  23. M. Zuo, J. Zhou, J. Yu, and S. Cui. Russ. J. Inorg. Chem., 2021, 66(7), 982-988. https://doi.org/10.1134/s0036023621070159

    Article  CAS  Google Scholar 

  24. A. I. Cherevko, G. L. Denisov, I. A. Nikovskii, A. V. Polezhaev, A. A. Korlyukov, and V. V. Novikov. Russ. J. Coord. Chem., 2021, 47(5), 319-325. https://doi.org/10.1134/s107032842105002x

    Article  CAS  Google Scholar 

  25. A. A. Pribylov, K. O. Murdmaa, and O. V. Solovtsova. Russ. Chem. Bull., 2021, 70(4), 665-671. https://doi.org/10.1007/s11172-021-3134-2

    Article  CAS  Google Scholar 

  26. M. Y. Pariichuk, K. A. Kopytin, L. A. Onuchak, and Y. V. Martina. Russ. J. Phys. Chem. A, 2021, 95(4), 806-811. https://doi.org/10.1134/s0036024421040208

    Article  CAS  Google Scholar 

  27. J. H. Carter, C. G. Morris, H. G. W. Godfrey, S. J. Day, J. Potter, S. P. Thompson, C. C. Tang, S. Yang, and M. Schröder. ACS Appl. Mater. Interfaces, 2020, 12(38), 42949-42954. https://doi.org/10.1021/acsami.0c11134

    Article  CAS  Google Scholar 

  28. Y. V. Torubaev, K. A. Lyssenko, and A. E. Popova. Russ. J. Coord. Chem., 2019, 45(11), 788-794. https://doi.org/10.1134/s1070328419110095

    Article  CAS  Google Scholar 

  29. A. V. Orlova, D. A. Ahiadorme, T. V. Laptinskaya, and L. O. Kononov. Russ. Chem. Bull., 2021, 70(11), 2214-2219. https://doi.org/10.1007/s11172-021-3335-8

    Article  CAS  Google Scholar 

  30. I. Yushina, N. Tarasova, D. Kim, V. Sharutin, and E. Bartashevich. Crystals, 2019, 9(10), 506. https://doi.org/10.3390/cryst9100506

    Article  CAS  Google Scholar 

  31. Y. V. Torubaev and I. V. Skabitsky. Z. Kristallogr. – Cryst. Mater., 2020, 235(12), 599-607. https://doi.org/10.1515/zkri-2020-0064

    Article  CAS  Google Scholar 

  32. V. V. Suslonov, N. S. Soldatova, D. M. Ivanov, B. Galmés, A. Frontera, G. Resnati, P. S. Postnikov, V. Y. Kukushkin, and N. A. Bokach. Cryst. Growth Des., 2021, 21(9), 5360-5372. https://doi.org/10.1021/acs.cgd.1c00654

    Article  CAS  Google Scholar 

  33. N. S. Soldatova, P. S. Postnikov, V. V. Suslonov, T. Y. Kissler, D. M. Ivanov, M. S. Yusubov, B. Galmés, A. Frontera, and V. Y. Kukushkin. Org. Chem. Front., 2020, 7(16), 2230-2242. https://doi.org/10.1039/d0qo00678e

    Article  CAS  Google Scholar 

  34. M. Kalaj, M. R. Momeni, K. C. Bentz, K. S. Barcus, J. M. Palomba, F. Paesani, and S. M. Cohen. Chem. Commun., 2019, 55(24), 3481-3484. https://doi.org/10.1039/c9cc00642g

    Article  CAS  Google Scholar 

  35. Y. Tang, H. Huang, J. Li, W. Xue, and C. Zhong. J. Mater. Chem. A, 2019, 7(31), 18324-18329. https://doi.org/10.1039/c9ta04408f

    Article  CAS  Google Scholar 

  36. W. Zhang, A. Nafady, C. Shan, L. Wojtas, Y. Chen, Q. Cheng, X. P. Zhang, and S. Ma. Angew. Chem., Int. Ed., 2021, 60(45), 24312-24317. https://doi.org/10.1002/anie.202111893

    Article  CAS  Google Scholar 

  37. G. R. Desiraju, P. S. Ho, L. Kloo, A. C. Legon, R. Marquardt, P. Metrangolo, P. Politzer, G. Resnati, and K. Rissanen. Pure Appl. Chem., 2013, 85(8), 1711-1713. https://doi.org/10.1351/pac-rec-12-05-10

    Article  CAS  Google Scholar 

  38. Y. Zhao and D. G. Truhlar. Theor. Chem. Acc., 2008, 120(1-3), 215-241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  39. W. J. Stevens, H. Basch, and M. Krauss. J. Chem. Phys., 1984, 81(12), 6026-6033. https://doi.org/10.1063/1.447604

    Article  Google Scholar 

  40. M. V. Kashina, M. A. Kinzhalov, A. S. Smirnov, D. M. Ivanov, A. S. Novikov, and V. Y. Kukushkin. Chem. – Asian J., 2019, 14(21), 3915-3920. https://doi.org/10.1002/asia.201901127

    Article  CAS  Google Scholar 

  41. M. A. Kinzhalov, M. V. Kashina, A. S. Mikherdov, E. A. Mozheeva, A. S. Novikov, A. S. Smirnov, D. M. Ivanov, M. A. Kryukova, A. Y. Ivanov, S. N. Smirnov, V. Y. Kukushkin, and K. V. Luzyanin. Angew. Chem., Int. Ed., 2018, 57(39), 12785-12789. https://doi.org/10.1002/anie.201807642

    Article  CAS  Google Scholar 

  42. T. Lu and F. Chen. J. Comput. Chem., 2012, 33(5), 580-592. https://doi.org/10.1002/jcc.22885

    Article  CAS  Google Scholar 

  43. P. Kang, H. D. Mai, and H. Yoo. Dalton Trans., 2018, 47(19), 6660-6665. https://doi.org/10.1039/c8dt00747k

    Article  CAS  Google Scholar 

  44. F. Cheng, H. Wang, Y. Hua, H. Cao, B. Zhou, J. Duan, and W. Jin. CrystEngComm, 2016, 18(48), 9227-9230. https://doi.org/10.1039/c6ce02247b

    Article  CAS  Google Scholar 

  45. M.-M. Dong, L.-L. He, Y.-J. Fan, S.-Q. Zang, H.-W. Hou, and T. C. W. Mak. Cryst. Growth Des., 2013, 13(8), 3353-3364. https://doi.org/10.1021/cg400033s

    Article  CAS  Google Scholar 

  46. X. Zhang, L. Fan, Z. Sun, W. Zhang, D. Li, P. Wei, B. Li, and J. Dou. J. Coord. Chem., 2012, 65(18), 3205-3215. https://doi.org/10.1080/00958972.2012.713099

    Article  CAS  Google Scholar 

  47. T. Christine, A. Tabey, T. Cornilleau, E. Fouquet, and P. Hermange. Tetrahedron, 2019, 75(52), 130765. https://doi.org/10.1016/j.tet.2019.130765

    Article  CAS  Google Scholar 

  48. A. Kommreddy, M. S. Bowsher, M. R. Gunna, K. Botha, and T. K. Vinod. Tetrahedron Lett., 2008, 49(28), 4378-4382. https://doi.org/10.1016/j.tetlet.2008.05.017

    Article  CAS  Google Scholar 

  49. V. Benin, S. Durganala, and A. B. Morgan. J. Mater. Chem., 2012, 22(3), 1180-1190. https://doi.org/10.1039/c1jm14682c

    Article  CAS  Google Scholar 

  50. N. Ivan, V. Benin, and A. B. Morgan. Synth. Commun., 2013, 43(13), 1831-1836. https://doi.org/10.1080/00397911.2012.673448

    Article  CAS  Google Scholar 

  51. K. Lee, H.-J. Kim, and J. Kim. Adv. Funct. Mater., 2012, 22(5), 1076-1086. https://doi.org/10.1002/adfm.201102027

    Article  CAS  Google Scholar 

  52. M. Kim, J. A. Boissonnault, P. V. Dau, and S. M. Cohen. Angew. Chem., Int. Ed., 2011, 50(51), 12193-12196. https://doi.org/10.1002/anie.201106429

    Article  CAS  Google Scholar 

  53. W. Qu, W. Xia, C. Feng, X. Tuo, and T. Qiu. J. Polym. Sci., Part A: Polym. Chem., 2011, 49(10), 2191-2198. https://doi.org/10.1002/pola.24649

    Article  CAS  Google Scholar 

  54. E. Rupp. Ber. Dtsch. Chem. Ges., 1896, 29(2), 1625-1634. https://doi.org/10.1002/cber.18960290293

    Article  CAS  Google Scholar 

  55. H. Wang, T. Deng, and C. Cai. J. Fluor. Chem., 2014, 168, 144-150. https://doi.org/10.1016/j.jfluchem.2014.09.024

    Article  CAS  Google Scholar 

  56. G. Rodríguez, M. Albrecht, J. Schoenmaker, A. Ford, M. Lutz, A. L. Spek, and G. van Koten. J. Am. Chem. Soc., 2002, 124(18), 5127-5138. https://doi.org/10.1021/ja0177657

    Article  CAS  Google Scholar 

  57. E. C. Kleiderer and R. Adams. J. Am. Chem. Soc., 1933, 55(10), 4219-4225. https://doi.org/10.1021/ja01337a057

    Article  CAS  Google Scholar 

  58. T.-Y. Luo, C. Liu, X. Y. Gan, P. F. Muldoon, N. A. Diemler, J. E. Millstone, and N. L. Rosi. J. Am. Chem. Soc., 2019, 141(5), 2161-2168. https://doi.org/10.1021/jacs.8b13502

    Article  CAS  Google Scholar 

  59. B. Tahmouresilerd, M. Moody, L. Agogo, and A. F. Cozzolino. Dalton Trans., 2019, 48(19), 6445-6454. https://doi.org/10.1039/c9dt00368a

    Article  CAS  Google Scholar 

  60. N. E. Searle and R. Adams. J. Am. Chem. Soc., 1933, 55(4), 1649-1654. https://doi.org/10.1021/ja01331a055

    Article  CAS  Google Scholar 

  61. F. Norouzi and H. R. Khavasi. New J. Chem., 2020, 44(21), 8937-8943. https://doi.org/10.1039/d0nj01149e

    Article  CAS  Google Scholar 

  62. Y. Li, H. Xu, X. Tao, K. Qian, S. Fu, Y. Shen, and S. Ding. J. Mater. Chem., 2011, 21(6), 1810-1821. https://doi.org/10.1039/c0jm02547j

    Article  CAS  Google Scholar 

  63. D. Cao, M. Hong, A. K. Blackburn, Z. Liu, J. M. Holcroft, and J. F. Stoddart. Chem. Sci., 2014, 5(11), 4242-4248. https://doi.org/10.1039/c4sc00999a

    Article  CAS  Google Scholar 

  64. C.-H. Liu, Q.-L. Guan, X.-D. Yang, F.-Y. Bai, L.-X. Sun, and Y.-H. Xing. Inorg. Chem., 2020, 59(12), 8081-8098. https://doi.org/10.1021/acs.inorgchem.0c00391

    Article  CAS  Google Scholar 

  65. Y. Wang, S. Xing, X. Zhang, C. Liu, B. Li, F. Bai, Y. Xing, and L. Sun. Appl. Organomet. Chem., 2019, 33(5), e4898. https://doi.org/10.1002/aoc.4898

    Article  CAS  Google Scholar 

  66. R. Wada, S. Kaga, Y. Kawai, K. Futamura, T. Murai, and F. Shibahara. Tetrahedron, 2021, 83, 131978. https://doi.org/10.1016/j.tet.2021.131978

    Article  CAS  Google Scholar 

  67. M. Abboud, V. Mamane, E. Aubert, C. Lecomte, and Y. Fort. J. Org. Chem., 2010, 75(10), 3224-3231. https://doi.org/10.1021/jo100152e

    Article  CAS  Google Scholar 

  68. D. A. Lee, D. M. Peloquin, E. W. Yapi, L. A. McMinn, J. W. Merkert, B. T. Donovan-Merkert, A. A. Vitallo, A. R. Peterson, D. S. Jones, C. Ceccarelli, and T. A. Schmedake. Polyhedron, 2017, 133, 358-363. https://doi.org/10.1016/j.poly.2017.05.040

    Article  CAS  Google Scholar 

  69. J. Richard, J. Joseph, C. Wang, A. Ciesielski, J. Weiss, P. Samorì, V. Mamane, and J. A. Wytko. J. Org. Chem., 2021, 86(4), 3356-3366. https://doi.org/10.1021/acs.joc.0c02708

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant 21-73-20019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Adonin.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 11, 102234.https://doi.org/10.26902/JSC_id102234

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, A.S., Sakhapov, I.F., Zaguzin, A.S. et al. HALOGEN BOND IN POROUS MATERIALS: RATIONAL SELECTION OF BUILDING BLOCKS. J Struct Chem 63, 1880–1886 (2022). https://doi.org/10.1134/S002247662211018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662211018X

Keywords

Navigation