Skip to main content
Log in

RHOMBOHEDRAL NIOBIUM MONOXIDE: THEORETICALLY PREDICTED HIGH- PRESSURE PHASE NbO

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The crystal structure of the NbO compound can be described as a vacancy-ordered derivative of the NaCl (B1) structure type with a concentration of structural vacancies of 25 at.% simultaneously in two sublattices. It was previously supposed that as the pressure increased, the vacancy-free NbO crystal with the B1 structure stabilized. In this work, effects of the pressure and the concentration of vacancies on the NbO structure are investigated by density functional theory methods. A new vacancy-free NbO phase with the rhombohedral crystal structure is found, its thermodynamic stability is evaluated, and the electronic structure is analyzed. It is demonstrated that with an increase in the pressure, rhombohedral NbO must be enthalpically stabilized rather than the vacancy-free NbO phase with the B1 structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. L. Jian, Y. Dan-qing, W. Jun-jie, Z. Hui, and L. Hui-qun. Trans. Nonferrous Met. Soc. China, 2006, 16, 848-852. https://doi.org/10.1016/S1003-6326(06)60338-5

    Article  CAS  Google Scholar 

  2. C. Nico, M. R. N. Soares, J. Rodrigues, M. Matos, R. Monteiro, M. P. F. Graça, M. A. Valente, F. M. Costa, and T. Monteiro. J. Phys. Chem. C, 2011, 115, 4879-4886. https://doi.org/10.1021/jp110672u

    Article  CAS  Google Scholar 

  3. Y. Qiu, D. Smyth, and J. Kimmel. Act. Passive Electron. Compon., 2002, 25, 201-209.

    Article  Google Scholar 

  4. T. Kárník. Metal, 2008, 5, 1-10.

  5. Q. Wan, F. Zeng, J. Yin, Y. Sun, Y. Hu, J. Liu, Y. Wang, G. Li, D. Guo, and F. Pan. Nanoscale, 2019, 11, 5684-5692. https://doi.org/10.1039/C8NR09765H

    Article  CAS  PubMed  Google Scholar 

  6. W. Gao, J. F. Conley Jr., and Y. Ono. Appl. Phys. Lett., 2004, 84(23), 4666-4668. https://doi.org/10.1063/1.1759780

    Article  CAS  Google Scholar 

  7. J. Li, W.-W. Liu, H.-M. Zhou, Z.-Z. Liu, B.-R. Chen, and W.-J. Sun. Rare Metals, 2018, 37, 118-122. https://doi.org/10.1007/s12598-014-0423-z

    Article  CAS  Google Scholar 

  8. D. Music, R. W. Geyer, P. Bliem, M. Hans, and D. Primetzhofer. J. Phys.: Condens. Matter., 2015, 27, 115501. https://doi.org/10.1088/0953-8984/27/11/115501

    Article  CAS  Google Scholar 

  9. S. Isobe, K. Kudoh, S. Hino, K. Hara, N. Hashimoto, and S. Ohnuki. Appl. Phys. Lett., 2015, 107, 081602. https://doi.org/10.1063/1.4929565

    Article  CAS  Google Scholar 

  10. K. Takahashi, S. Isobe, and S. Ohnuki. J. Alloys Compd., 2013, 580, S25-S28. https://doi.org/10.1016/j.jallcom.2013.02.044

    Article  CAS  Google Scholar 

  11. R. A. MoghadamEsfahani, S. K. Vankova, E. B. Easton, I. I. Ebralidze, and S. Specchia. Renewable Energy, 2020, 154, 913-924. https://doi.org/10.1016/j.renene.2020.03.029

    Article  CAS  Google Scholar 

  12. J. K. Hulm, C. K. Jones, R. A. Hein, and J. W. Gibson. J. Low Temp. Phys., 1972, 7, 291-307. https://doi.org/10.1007/BF00660068

    Article  CAS  Google Scholar 

  13. A. M. Okatz and P. H. Keesom. Phys. Rev. B, 1975, 12, 4917-4928. https://doi.org/10.1103/PhysRevB.12.4917

    Article  CAS  Google Scholar 

  14. A. L. Bowman, T. C. Wallace, J. L. Yarnell, and R. G. Wenzel. Acta Crystallogr., 1966, 21, 843. https://doi.org/10.1107/S0365110X66004043

    Article  CAS  Google Scholar 

  15. E. Z. Kurmaev, A. Moewes, O. G. Bureev, I. A. Nekrasov, V. M. Cherkashenko, M. A. Korotin, and D. L. Ederer. J. Alloys Compd., 2002, 347, 213-218. https://doi.org/10.1016/S0925-8388(02)00765-X

    Article  CAS  Google Scholar 

  16. Z. Hu, G. Qian, S. Li, L. Yang, X. Chen, M. Weng, W. Tan, and F. Pan. Sci. Bull., 2020, 65(5), 367-372. https://doi.org/10.1016/j.scib.2019.10.026

    Article  CAS  Google Scholar 

  17. C. Nico, L. Rino, M. Matos, R. Monteiro, F. M. Costa, T. Monteiro, and M. P. F. Graça. J. Eur. Ceram. Soc., 2013, 33, 3077-3083. https://doi.org/10.1016/j.jeurceramsoc.2013.06.020

    Article  CAS  Google Scholar 

  18. W. W. Schulz and R. M. Wentzcovitch. Phys. Rev. B, 1993, 48(23), 16986-16991. https://doi.org/10.1103/PhysRevB.48.16986

    Article  CAS  Google Scholar 

  19. A. K. Efimenko, N. Hollmann, K. Hoefer, J. Weinen, D. Takegami, K. K. Wolff, S. G. Altendorf, Z. Hu, A. D. Rata, A. C. Komarek, A. A. Nugroho, Y. F. Liao, K.-D. Tsuei, H. H. Hsieh, H.-J. Lin, C. T. Chen, L. H. Tjeng, and D. Kasinathan. Phys. Rev. B, 2017, 96(19), 195112. https://doi.org/10.1103/PhysRevB.96.195112

    Article  CAS  Google Scholar 

  20. A. Miura, T. Takei, N. Kumada, S. Wada, E. Magome, C. Moriyoshi, and Y. Kuroiwa. Inorg. Chem., 2013, 52, 9699-9701. https://doi.org/10.1021/ic400830b

    Article  CAS  PubMed  Google Scholar 

  21. C. Giaconia and R. Tetot. J. Phys. Chem. Solids., 1997, 58(7), 1041-1052. https://doi.org/10.1016/S0022-3697(97)00004-8

    Article  CAS  Google Scholar 

  22. A. A. Valeeva, H. Schroettnerc, and A. A. Rempel. Inorg. Mater., 2014, 50(4), 398-403. https://doi.org/10.1134/S0020168514040177

    Article  CAS  Google Scholar 

  23. D. Music, O. Hunold, S. Coultas, and A. Roberts. Solid State Commun., 2017, 258, 33-37. https://doi.org/10.1016/j.ssc.2017.04.016

    Article  CAS  Google Scholar 

  24. D. Music, S. Prünte, P. Keuter, and A. Saksena. J. Phys. D: Appl. Phys., 2020, 53, 285303. https://doi.org/10.1088/1361-6463/ab8517

    Article  CAS  Google Scholar 

  25. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal. J. Phys. Condens. Matter, 2002, 14(11), 2745-2779. https://doi.org/10.1088/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  26. S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. Mehl, H. T. Stokes, D. O. Demchenko, and D. Morgan. Comput. Mater. Sci., 2012, 58, 218-226. https://doi.org/10.1016/j.commatsci.2012.02.005

    Article  CAS  Google Scholar 

  27. K. Momma and F. Izumi. J. Appl. Crystallogr., 2011, 44, 1272-1276. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  28. The Elk Code. http://elk.sourceforge.net

  29. M. Methfessel and A. T. Paxton. Phys. Rev. B, 1989, 40, 3616. https://doi.org/10.1103/PhysRevB.40.3616

    Article  CAS  Google Scholar 

  30. P. Allen and R. C. Dynes. Phys. Rev. B, 1975, 12, 905. https://doi.org/10.1103/PhysRevB.12.905

    Article  CAS  Google Scholar 

  31. M. A. Lahmer. Comput. Condens. Matter, 2019, 21, e00405. https://doi.org/10.1016/j.cocom.2019.e00405

    Article  Google Scholar 

  32. S. M. Gali, A. Pershin, A. Lherbier, J.-C. Charlier, and D. Beljonne. J. Phys. Chem. C, 2020, 124, 28, 15076-15084. https://doi.org/10.1021/acs.jpcc.0c04203

    Article  CAS  Google Scholar 

  33. I. S. Popov, A. N. Enyashin, and A. A. Rempel. Superlattices Microstruct., 2018, 113, 459-465. https://doi.org/10.1016/j.spmi.2017.11.031

    Article  CAS  Google Scholar 

  34. D. Bach, H. Störmer, R. Schneider, D. Gerthsen, and J. Verbeeck. Microsc. Microanal., 2006, 12, 416-423. https://doi.org/10.1017/S1431927606060521

    Article  CAS  PubMed  Google Scholar 

  35. W. L. McMillan. Phys. Rev. B, 1968, 167, 331. https://doi.org/10.1103/PhysRev.167.331

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project No. 19-73-20012) at the Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Popov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 10, 99671.https://doi.org/10.26902/JSC_id99671

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, I.S., Shein, I.R., Valeeva, A.A. et al. RHOMBOHEDRAL NIOBIUM MONOXIDE: THEORETICALLY PREDICTED HIGH- PRESSURE PHASE NbO. J Struct Chem 63, 1639–1648 (2022). https://doi.org/10.1134/S0022476622100109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622100109

Keywords

Navigation