Skip to main content
Log in

CHEMISORPTION OF C2H2 ON C20 BOWL: A COMPUTATIONAL INVESTIGATION

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Chemisorption of C2H2 gas on the C20 bowl was studied at the LC-wPBE/6-311G(d,p) level of theory. Various models of chemisorption of C2H2 gas on the C20 bowl were considered. The illustration of chemisorption was performed using the energy decomposition analysis. Variations in the frontier orbitals energies and structural parameters were also considered. The electrophilicity-based charge transfer was used to illustrate charge transfer between fragments. Thermochemical parameters of this process were revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. A. N. R. Bos, E. S. Bootsma, F. Foeth, H. W. J. Sleyster, and K. R. Westerterp. Chem. Eng. Process., 1993, 32, 53. https://doi.org/10.1016/0255-2701(93)87006-G

    Article  CAS  Google Scholar 

  2. A. S. Rad and K. Ayub. Mater. Chem. Phys., 2017, 194, 337. https://doi.org/10.1016/j.matchemphys.2017.04.002

    Article  CAS  Google Scholar 

  3. A. S. Rad. Synth. Met., 2016, 211, 115. https://doi.org/10.1215/00382876-3425035

    Article  Google Scholar 

  4. C. G. P. M. Bernardo and J. A. N. F. Gomes. In: Theoretical Aspects of Heterogeneous Catalysis: Progress in Theoretical Chemistry and Physics, Vol. 8 / Eds. W. N. Lipscomb, I. Prigogine, J. Maruani, S. Wilson, H. Ågren, D. Avnir, J. Cioslowski, R. Daudel, E. K. U. Gross, W. F. Gunsteren, K. Hirao, I. Hubač, M. P. Levy, G. L. Malli, R. McWeeny, P. G. Mezey, M. A. C. Nascimento, J. Rychlewski, S. D. Schwartz, Y. G. Smeyers, S. Suhai, O. Tapia, P. R. Taylor, and R. G. Woolley. Springer Science, 2001, 217. https://doi.org/10.1007/0-306-47667-3_9

    Chapter  Google Scholar 

  5. Z. Kazemi, R. Ghiasi, and S. Jamehbozorgi. J. Nanoanal., 2019, 6, 121.

  6. R. Ghiasi, F. Hadi, and A. H. Hakimyuon. J. Appl. Chem. Res., 2014, 8, 55.

    Article  CAS  Google Scholar 

  7. P. Bechthold, M. Sandoval, E. A. González, G. Brizuela, A. Bonivardi, and P. V. Jasen. J. Phys. Chem. C, 2015, 119, 18229. https://doi.org/10.1021/acs.jpcc.5b04214

    Article  CAS  Google Scholar 

  8. M. D. Esrafili and L. Dinparast. J. Phys. Chem. Solids, 2018, 117, 42. https://doi.org/10.1016/j.jpcs.2018.02.022

    Article  CAS  Google Scholar 

  9. Y. Zhou, W. Sun, W. Chu, J. Zheng, X. Gao, X. Zhou, and Y. Xue. Appl. Surf. Sci., 2018, 435, 521. https://doi.org/10.1016/j.apsusc.2017.11.138

    Article  CAS  Google Scholar 

  10. R. S. Shamsiev, F. O. Danilov, and T. A. Morozova. Russ. Chem. Bull., 2017, 66, 401. https://doi.org/10.1007/s11172-017-1747-2

    Article  CAS  Google Scholar 

  11. P. Matczak. J. Struct. Chem., 2013, 54(1), 40. https://doi.org/10.1134/S002247661301006X

    Article  CAS  Google Scholar 

  12. J. W. Medlin and M. D. Allendorf. J. Phys. Chem. B, 2003, 107, 217. https://doi.org/10.1021/jp026555t

    Article  CAS  Google Scholar 

  13. A. Rezaei, R. Ghiasi, and A. Marjani. J. Nanostruct. Chem., 2020, 10, 179. https://doi.org/10.1007/s40097-020-00340-2

    Article  Google Scholar 

  14. B. Chan. J. Phys. Chem. A, 2020, 124, 6688. https://doi.org/10.1021/acs.jpca.0c04732

    Article  CAS  PubMed  Google Scholar 

  15. L. Fulcheri, Y. Schwob, F. Fabry, G. Flamant, L. Chibante, and D. Laplaze. Carbon, 2000, 38, 797. https://doi.org/10.1016/S0008-6223(99)00153-0

    Article  CAS  Google Scholar 

  16. L. D. Lamb and D. R. Huffman. J. Phys. Chem. Solids, 1993, 54, 1635. https://doi.org/10.1016/0022-3697(93)90277-X

    Article  CAS  Google Scholar 

  17. H. Takehara, M. Fujiwara, M. Arikawa, M. D. Diener, and J. M. Alford. Carbon, 2005, 43, 311. https://doi.org/10.1016/j.carbon.2004.09.017

    Article  CAS  Google Scholar 

  18. C. Crowley, R. Taylor, H. W. Kroto, D. R. Walton, P.-C. Cheng, and L. T. Scott. Synth. Met., 1996, 77, 17. https://doi.org/10.1016/0379-6779(96)80048-8

    Article  CAS  Google Scholar 

  19. R. Dubrovsky, V. Bezmelnitsyn, and A. Eletskii. Carbon, 2004, 42, 1063. https://doi.org/10.1016/j.carbon.2003.12.010

    Article  CAS  Google Scholar 

  20. M. C. Padole and P. A. Deshpande. J. Phys. Chem. C, 2016, 120, 12654. https://doi.org/10.1021/acs.jpcc.6b03747

    Article  CAS  Google Scholar 

  21. F. Zhao, Y. Wang, M. Zhu, and L. Kang. RSC Adv., 2015, 5, 56348. https://doi.org/10.1039/C5RA08266H

    Article  CAS  Google Scholar 

  22. Y. Wang and L. Kang. Catalysts, 2020, 10, 115. https://doi.org/10.3390/catal10010115

    Article  CAS  Google Scholar 

  23. K. D. Sattler. Handbook of Nanophysics: Clusters and Fullerenes. CRC, 2010.

  24. P. Pyykkö, C. Wang, M. Straka, and J. Vaara. Phys. Chem. Chem. Phys., 2007, 9, 2954. https://doi.org/10.1039/b704695b

    Article  CAS  Google Scholar 

  25. H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Wörth, L. T. Scott, M. Gelmont, D. Olevano, and B. Issendorff. Nature, 2000, 407, 60. https://doi.org/10.1038/35024037

    Article  CAS  PubMed  Google Scholar 

  26. H. Prinzbach, F. Wahl, W. A. P. Landenberger, J. Woerth, L. T. Scott, M. Gelmont, D. Olevano, F. Sommer, and B. Issendorff. Chem. – Eur. J., 2006, 12, 6268. https://doi.org/10.1002/chem.200501611

    Article  CAS  PubMed  Google Scholar 

  27. W. An, Y. Gao, S. Bulusu, and X. C. Zeng. J. Chem. Phys., 2005, 122, 204109. https://doi.org/10.1063/1.1903946

    Article  CAS  PubMed  Google Scholar 

  28. C. Zhang, W. Sun, and Z. Cao. J. Chem. Phys., 2007, 126, 144306. https://doi.org/10.1063/1.2716642

    Article  CAS  PubMed  Google Scholar 

  29. A. K. Ray and M. N. Huda. J. Comput. Theor. Nanosci., 2006, 3, 315. https://doi.org/10.1166/jctn.2006.3014

    Article  CAS  Google Scholar 

  30. F. N. Ajeel. Chin. J. Phys., 2017, 55, 2134. https://doi.org/10.1016/j.cjph.2017.05.031

    Article  CAS  Google Scholar 

  31. R. Ghiasi and A. Valizadeh. Main Group Chem., 2022, 21, 43. https://doi.org/10.3233/MGC-210076

    Article  CAS  Google Scholar 

  32. Ö. Alver, C. Parlak, and P. Ramasami. Adsorpt. Sci. Technol., 2018, 36, 788. https://doi.org/10.1177/0263617417722922

    Article  CAS  Google Scholar 

  33. L. Zoppi, L. Martin-Samos, and K. K. Baldridge. Acc. Chem. Res., 2014, 47, 3310. https://doi.org/10.1021/ar5001132

    Article  CAS  PubMed  Google Scholar 

  34. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision A.02. Wallingford, CT: Gaussian, 2009.

  35. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople. J. Chem. Phys., 1980, 72, 650. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  36. A. D. McLean and G. S. Chandler. J. Chem. Phys., 1980, 72, 5639. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  37. L. A. Curtiss, M. P. McGrath, J.-P. Blandeau, N. E. Davis, R. C. Binning, and J. L. Radom. J. Chem. Phys., 1995, 103, 6104. https://doi.org/10.1063/1.470438

    Article  CAS  Google Scholar 

  38. O. A. Vydrov, G. E. Scuseria, and J. P. Perdew. J. Chem. Phys., 2007, 126, 154109. https://doi.org/10.1063/1.2723119

    Article  CAS  PubMed  Google Scholar 

  39. O. A. Vydrov and G. E. Scuseria. J. Chem. Phys., 2006, 125, 234109. https://doi.org/10.1063/1.2409292

    Article  CAS  PubMed  Google Scholar 

  40. Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao. J. Chem. Phys., 2004, 120, 8425. https://doi.org/10.1063/1.1688752

    Article  CAS  PubMed  Google Scholar 

  41. O. A. Vydrov, J. Heyd, A. Krukau, and G. E. Scuseria. J. Chem. Phys., 2006, 125, 074106. https://doi.org/10.1063/1.2244560

    Article  CAS  PubMed  Google Scholar 

  42. I. H. Nayyar, E. R. Batista, S. Tretiak, A. Saxena, D. L. Smith, and R. L. Martin. J. Chem. Theory Comput., 2013, 9, 1144. https://doi.org/10.1021/ct300837d

    Article  CAS  PubMed  Google Scholar 

  43. I. H. Nayyar, E. R. Batista, S. Tretiak, A. Saxena, D. L. Smith, and R. L. Martin. J. Phys. Chem. Lett., 2011, 2, 566. https://doi.org/10.1021/jz101740w

    Article  CAS  Google Scholar 

  44. C. Møller and M. S. Plesset. Phys. Rev. B, 1934, 46, 0618. https://doi.org/10.1103/PhysRev.46.618

    Article  Google Scholar 

  45. M. Head-Gordon, J. A. Pople, and M. J. Frisch. Chem. Phys. Lett., 1988, 153, 503. https://doi.org/10.1016/0009-2614(88)85250-3

    Article  CAS  Google Scholar 

  46. The Challenge of d and f Electrons / Ed. M. C. Zerner. Washington, D.C.: ACS, 1989.

  47. M. J. Frisch, M. Head-Gordon, and J. A. Pople. Chem. Phys. Lett., 1990, 166, 275. https://doi.org/10.1016/0009-2614(90)80029-D

    Article  CAS  Google Scholar 

  48. M. J. Frisch, M. Head-Gordon, and J. A. Pople. Chem. Phys. Lett., 1990, 166, 281. https://doi.org/10.1016/0009-2614(94)00116-2

    Article  CAS  Google Scholar 

  49. M. Head-Gordon and T. Head-Gordon. Chem. Phys. Lett., 1994, 220, 122. https://doi.org/10.1016/0009-2614(94)00116-2

    Article  CAS  Google Scholar 

  50. T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. V. R. Schleyer. J. Comput. Chem., 1983, 4, 294. https://doi.org/10.1002/jcc.540040303

    Article  CAS  Google Scholar 

  51. D. Feller. J. Comput. Chem., 1996, 17, 1571. https://doi.org/10.1002/(SICI)1096-987X(199610)17:13%3C1571::AID-JCC9%3E3.0.CO;2-P

    Article  CAS  Google Scholar 

  52. B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibsom, and T. L. Windus. J. Chem. Inf. Model., 2019, 59, 4814. https://doi.org/10.1021/acs.jcim.9b00725

    Article  CAS  PubMed  Google Scholar 

  53. K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus. J. Chem. Inf. Model., 2007, 47, 1045. https://doi.org/10.1021/ci600510j

    Article  CAS  PubMed  Google Scholar 

  54. T. Lu and F. Chen. J. Mol. Graphics Modell., 2012, 38, 314. https://doi.org/10.1016/j.jmgm.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  55. T. Lu and F. Chen. J. Comput. Chem., 2012, 33, 580. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  56. M. E. Foster and B. M. Wong. J. Chem. Theory Comput., 2012, 8, 2682. https://doi.org/10.1021/ct300420f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. L. N. Anderson, M. B. Oviedo, and B. M. Wong. J. Chem. Theory Comput., 2017, 13, 1656. https://doi.org/10.1021/acs.jctc.6b01249

    Article  CAS  PubMed  Google Scholar 

  58. J. Padmanabhan, R. Parthasarathi, V. Subramanian, and P. K. Chattaraj. J. Phys. Chem. A, 2007, 111, 1358. https://doi.org/10.1021/jp0649549

    Article  CAS  PubMed  Google Scholar 

  59. R. G. Pearson. J. Org. Chem., 1989, 54, 1430. https://doi.org/10.1021/jo00267a034

    Article  CAS  Google Scholar 

  60. R. G. Parr and R. G. Pearson. J. Am. Chem. Soc., 1983, 105, 7512. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  61. P. Geerlings, F. D. Proft, and W. Langenaeker. Chem. Rev., 2003, 103, 1793. https://doi.org/10.1021/cr990029p

    Article  CAS  PubMed  Google Scholar 

  62. R. G. Parr, L. Szentpály, and S. Liu. J. Am. Chem. Soc., 1999, 121, 1922. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  63. R. G. Parr and W. Yang. Density Functional Theory of Atoms and Molecules. Oxford, New York: Oxford University Press, 1989.

  64. K. B. Wiberg. Tetrahedron, 1968, 24, 1083. https://doi.org/10.1016/0040-4020(68)88057-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ghiasi.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 10, 99318.https://doi.org/10.26902/JSC_id99318

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarghein, M.G., Ghiasi, R. & Baniyaghoob, S. CHEMISORPTION OF C2H2 ON C20 BOWL: A COMPUTATIONAL INVESTIGATION. J Struct Chem 63, 1600–1609 (2022). https://doi.org/10.1134/S0022476622100067

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622100067

Keywords

Navigation