Skip to main content
Log in

EXPERIMENTAL AND COMPUTATIONAL STUDY OF THE STRUCTURE AND BONDING INTERACTIONS IN LAYERED COMPOUNDS OF MOLYBDENUM DISULFIDE WITH GUANIDINE DERIVATIVES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Heterolayer MoS2 compounds with molecules of protonated guanidine (GUA) and its aliphatic derivative 1,5,7- triazobicyclo[4.4.0]dec-5-ene (TABD) are prepared using single-layer dispersion of molybdenum disulfide. The structure of these compounds, including the geometry of sulfide layers and the localization of organic cations, is determined by powder X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and density functional theory (DFT) calculations. The analysis of the topology and energy characteristics of non-covalent bonding interactions within the Quantum Theory of Atoms in Molecules shows that the contribution of NH…S bonds to the stabilization of the heterolayer structure is essential in the compound with GUA and is significantly smaller than the contribution of CH…S contacts in the compound with TABD. Relation between the number and energetics of bonding contacts between the components with the geometry and positions of organic molecules in the interlayer space of MoS2 is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Nat. Nanotechnol., 2011, 6, 147. https://doi.org/10.1038/nnano.2010.279

    Article  CAS  Google Scholar 

  2. E. Er, H.-L. Hou, A. Criado, J. Langer, M. Mo, L. M. Liz-Marzan, and M. Prato. Chem. Mater., 2019, 31(15), 5725. https://doi.org/10.1021/acs.chemmater.9b01698

    Article  CAS  Google Scholar 

  3. A. Yu. Ledneva, G. E. Chebanova, S. B. Artemkina, and A. N. Lavrov. J. Struct. Chem., 2022, 63(3), 176. https://doi.org/10.1134/S0022476622020020

    Article  CAS  Google Scholar 

  4. K. Zhou, J. Liu, P. Wen, Y. Hu, and Z. Gui. Appl. Surf. Sci., 2014, 316, 237. https://doi.org/10.1016/j.apsusc.2014.07.136

    Article  CAS  Google Scholar 

  5. S. Presolski, L. Wang, A. H. Loo, A. Ambrosi, P. Lazar, V. Ranc, M. Otyepka, R. Zboril, O. Tomanec, J. Ugolotti, Z. Sofer, and M. Pumera. Chem. Mater., 2017, 29(5), 2066. doi.org/10.1021/acs.chemmater.6b04171

    Article  CAS  Google Scholar 

  6. I. H. Kwak, I. S. Kwon, H. G. Abbas, J. Seo, G. Jung, Y. Lee, D. Kim, J.-P. Ahn, J. Park, and H. S. Kang. J. Mater. Chem. A, 2019, 7, 2334. https://doi.org/10.1039/C8TA11085A

    Article  CAS  Google Scholar 

  7. M. Xiao, A. R. Chandrasekaran, W. Ji, F. Li, T. Man, C. Zhu, X. Shen, H. Pei, Q. Li, and L. Li. ACS Appl. Mater. Interfaces, 2018, 10, 35794. https://doi.org/10.1021/acsami.8b14035

    Article  CAS  PubMed  Google Scholar 

  8. H. Reddy Inta, T. Biswas, S. Ghosh, R. Kumar, S. Kanti Jana, and V. Mahalingam. ChemNanoMat, 2020, 6, 685. https://doi.org/10.1002/cnma.202000005

    Article  CAS  Google Scholar 

  9. A. S. Goloveshkin, N. D. Lenenko, A. V. Naumkin, A. Yu. Pereyaslavtsev, A. V. Grigorieva, A. V. Shapovalov, V. N. Talanova, A. V. Polezhaev, V. I. Zaikovskii, V. V. Novikov, A. A. Korlyukov, and A. S. Golub. ChemNanoMat, 2021, 7(4), 447. https://doi.org/10.1002/cnma.202000586

    Article  CAS  Google Scholar 

  10. S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid. Angew. Chem., Int. Ed., 2013, 52, 4160. https://doi.org/10.1002/anie.201209229

    Article  CAS  Google Scholar 

  11. T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, and Z. Liu. Adv. Mater., 2014, 26(21), 3433. https://doi.org/10.1002/adma.201305256

    Article  CAS  PubMed  Google Scholar 

  12. Q. Gao, X. Zhang, W. Yin, D. Ma, C. Xie, L. Zheng, X. Dong, L. Mei, J. Yu, C. Wang, Z. Gu, and Y. Zhao. Small, 2018, 14, 1802290. https://doi.org/10.1002/smll.201802290

    Article  CAS  Google Scholar 

  13. Y. Taguchi, R. Kimura, R. Azumi, H. Tachibana, N. Koshizaki, M. Shimomura, N. Momozawa, H. Sakai, M. Abe, and M. Matsumoto. Langmuir, 1998, 14, 6550. https://doi.org/10.1021/la980551r

    Article  CAS  Google Scholar 

  14. A. S. Golub, V. I. Zaikovskii, N. D. Lenenko, M. Danot, and Y. N. Novikov. Russ. Chem. Bull., 2004, 53, 1914.

  15. A. V. Anyushin, E. V. Korotaev, A. Yu. Andreeva, M. R. Ryzhikov, D. A. Mainichev, M. N. Sokolov, and V. P. Fedin. Russ. Chem. Bull., 2016, 65, 173. https://doi.org/10.1007/s11172-016-1280-8

    Article  CAS  Google Scholar 

  16. A. S. Goloveshkin, I. S. Bushmarinov, A. A. Korlyukov, M. I. Buzin, V. I. Zaikovskii, N. D. Lenenko, and A. S. Golub. Langmuir, 2015, 31, 8953. https://doi.org/10.1021/acs.langmuir.5b02344

    Article  CAS  PubMed  Google Scholar 

  17. I. E. Ushakov, A. S. Goloveshkin, N. D. Lenenko, M. G. Ezernitskaya, A. A. Korlyukov, V. I. Zaikovskii, and A. S. Golub. Cryst. Growth Des., 2018, 18, 5116. https://doi.org/10.1021/acs.cgd.8b00551

    Article  CAS  Google Scholar 

  18. I. E. Ushakov, N. D. Lenenko, A. S. Goloveshkin, A. A. Korlyukov, and A. S. Golub. CrystEngComm, 2022, 24, 639. https://doi.org/10.1039/D1CE01350E

  19. E. Diez-Cecilia, B. Kelly, C. Perez, D. M. Zisterer, D. K. Nevin, D. G. Lloyd, and I. Rozas. Eur. J. Med. Chem., 2014, 81, 427. https://doi.org/10.1016/j.ejmech.2014.05.025

    Article  CAS  PubMed  Google Scholar 

  20. N. Dantas, T. M. de Aquino, J. X. de Araújo-Júnior, E. da Silva-Júnior, E. A. Gomes, A. A. S. Gomes, J. P. Siqueira-Júnior, and F. J. B. Mendonça Jr. Chem.-Biol. Interact., 2018, 280, 8. https://doi.org/10.1016/j.cbi.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  21. I. E. Ushakov, A. S. Goloveshkin, N. D. Lenenko, R. U. Takazova, M. G. Ezernitskaya, A. A. Korlyukov, V. I. Zaikovskii, and A. S. Golub. Russ. J. Coord. Chem., 2020, 46, 779. https://doi.org/10.1134/S1070328420090067

    Article  CAS  Google Scholar 

  22. A.S. Goloveshkin, I.S. Bushmarinov, A.A. Korlyukov, N.D. Lenenko, A.S. Golub, I.L. Eremenko. Russ. J. Inorg. Chem., 2017, 62, 729. https://doi.org/10.1134/S0036023617060080

    Article  CAS  Google Scholar 

  23. V. N. Talanova, O. L. Lependina, D. Kh. Kitaeva, and A. G. Buyanovskaya. Inorg. Mater., 2021, 57, 1422. https://doi.org/10.1134/S0020168521140144

    Article  CAS  Google Scholar 

  24. G. Kresse and J. Furthmüller. Comput. Mater. Sci., 1996, 6, 15. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  25. G. Kresse and J. Furthmüller. Phys. Rev. B, 1996, 54, 11169. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  26. S. Grimme. J. Comput. Chem., 2006, 27, 1787. https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  27. G. Kresse and D. Joubert. Phys. Rev. B, 1999, 59, 1758. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  28. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D. C. Allan. Comput. Mater. Sci., 2002, 25, 478. https://doi.org/10.1016/S0927-0256(02)00325-7

    Article  Google Scholar 

  29. K. Ufer, G. Roth, R. Kleeberg, H. Stanjek, R. Dohrmann, and J. Bergmann. Z. Kristallogr., 2004, 219, 519-527. https://doi.org/10.1524/zkri.219.9.519.44039

    Article  CAS  Google Scholar 

  30. F. Wypych and R. Schöllhorn. J. Chem. Soc., Chem. Commun., 1992, 1386. https://doi.org/10.1039/c39920001386

    Article  Google Scholar 

  31. G. Gao, Y. Jiao, F. Ma, Y. Jiao, E. Waclawik, and A. Du. J. Phys. Chem. C, 2015, 119, 13124. https://doi.org/10.1021/acs.jpcc.5b04658

    Article  CAS  Google Scholar 

  32. A. N. Enyashin and G. Seifert. Comput. Theor. Chem., 2012, 999, 13. https://doi.org/10.1016/j.comptc.2012.08.005

    Article  CAS  Google Scholar 

  33. R. Bissessur, R. I. Haines, and R. Brüning. J. Mater. Chem., 2003, 13, 44. https://doi.org/10.1039/b208237n

    Article  CAS  Google Scholar 

  34. R. F. W. Bader. Atoms in Molecules: A Quantum Theory. Oxford UK: Oxford University Press, 1994.

  35. E. Espinosa, E. Molins, and C. Lecomte. Chem. Phys. Lett., 1998, 285, 170. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  36. E. Espinosa, C. Lecomte, and E. Molins. Chem. Phys. Lett., 1999, 300, 745. https://doi.org/10.1016/S0009-2614(98)01399-2

    Article  CAS  Google Scholar 

  37. L. K. Macreadie, A. J. Edwards, A. S. R. Chesman, and D. R. Turner. Aust. J. Chem., 2014, 67, 1829. https://doi.org/10.1071/CH14355

    Article  CAS  Google Scholar 

  38. N. von Wolff, C. Villiers, P. Thuéry, G. Lefèvre, M. Ephritikhine, and T. Cantat. Eur. J. Org. Chem., 2017, 2017, 676. https://doi.org/10.1002/ejoc.201601267

    Article  CAS  Google Scholar 

  39. Y. S. J. Veldhuizen, N. Veldman, A. L. Spek, C. Faulmann, J. G. Haasnoot, and J. Reedijk. Inorg. Chem., 1995, 34, 140-147. https://doi.org/10.1021/ic00105a025

    Article  CAS  Google Scholar 

  40. G. D. Andreetti, L. Coghi, M. Nardelli, and P. Sgarabotto. J. Cryst. Mol. Struct., 1971, 1, 147. https://doi.org/10.1007/BF01197798

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 22-23-00225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Golub.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 10, 99124.https://doi.org/10.26902/JSC_id99124

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushakov, I.E., Lenenko, N.D., Goloveshkin, A.S. et al. EXPERIMENTAL AND COMPUTATIONAL STUDY OF THE STRUCTURE AND BONDING INTERACTIONS IN LAYERED COMPOUNDS OF MOLYBDENUM DISULFIDE WITH GUANIDINE DERIVATIVES. J Struct Chem 63, 1558–1567 (2022). https://doi.org/10.1134/S002247662210002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662210002X

Keywords

Navigation