Skip to main content
Log in

STRUCTURE AND THERMAL PROPERTIES OF VOLATILE MIXED-LIGAND MAGNESIUM COMPLEXES: EFFECT OF TERT-BUTYL AND PHENYL SUBSTITUTES IN A FLUORINATED β-DIKETONATE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Structures of volatile mixed-ligand complexes of magnesium with N,N,N′,N′-tetramethylethylenediamine (tmeda) and fluorinated β-diketonate ligands L = CF3C(O)CHC(O)R (R = t-Bu (ptac) and Ph (btfac)) are determined. Complex [Mg(tmeda)(btfac)2] is obtained for the first time and is characterized by elemental analysis and IR spectrometry. Both [Mg(tmeda)(L)2] compounds are molecular complexes, and the symmetry of their crystals is increased due to the presence of an aromatic substituent: space groups Pccn (L = btfac) and P21/n (L = ptac). The magnesium atom occurs in a distorted octahedral environment of three chelate ligands. The bond lengths and chelate angles in both complexes are similar: d(Mg–N) = 2.226(2)-2.245(1) Å, d(Mg–O) = 2.030(2)-2.043(2) Å, θ(N–Mg–N) = 80.97(7)-81.68(10)°, θ(O–Mg–O) = 85.61(9)-85.75(7)°. The Hirshfeld surfaces (CrystalExplorer, Tonto) show a presence of weak intermolecular contacts C–HPh…F in the [Mg(tmeda)(btfac)2] packing (4 contacts per molecule). The qualitative order of volatility decrease for the complexes and their hexafluoroacetylacetonate analogue [Mg(tmeda)(hfac)2] (TGA and vacuum sublimation data) corresponds to the estimated energy increase of [Mg(tmeda)(L)2] crystal lattices (CrystalExplorer, B3LYP/6-31G(d,p)): L = hfac ~ ptac >> btfac.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. P. H. Joosten, P. Heller, H. J. Nabben, H. A. van Hal, T. J. Popma, and J. Haisma. Appl. Opt., 1985, 24(16), 2674-2678. https://doi.org/10.1364/AO.24.002674

    Article  CAS  PubMed  Google Scholar 

  2. M. E. Fragala, R. G. Toro, S. Privitera, and G. Malandrino. Chem. Vap. Deposition, 2011, 17(4-6), 80-87. https://doi.org/10.1002/cvde.201106849

    Article  CAS  Google Scholar 

  3. M. Mäntymäki, M. Ritala, and M. Leskelä. Coatings, 2018, 8(8), 277. https://doi.org/10.3390/coatings8080277

    Article  CAS  Google Scholar 

  4. L. Wang, Y. Yang, J. Ni, C. L. Stern, and T. J. Marks. Chem. Mater., 2005, 17(23), 5697-5704. https://doi.org/10.1021/cm0512528

    Article  CAS  Google Scholar 

  5. E. S. Vikulova, K. V. Zherikova, S. V. Sysoev, A. E. Turgambaeva, S. V. Trubin, N. B. Morozova, and I. K. Igumenov. J. Therm. Anal. Calorim., 2019, 137(3), 923-930. https://doi.org/10.1007/s10973-018-07991-y

    Article  CAS  Google Scholar 

  6. S. Mishra and S. Daniele. Chem. Rev., 2015, 115(16), 8379-8448. https://doi.org/10.1021/cr400637c

    Article  CAS  PubMed  Google Scholar 

  7. E. S. Vikulova, K. V. Zherikova, I. V. Korolkov, L. N. Zelenina, T. P. Chusova, S. V. Sysoev, N. I. Alferova, N. B. Morozova, and I. K. Igumenov. J. Therm. Anal. Calorim., 2014, 118(2), 849-856. https://doi.org/10.1007/s10973-014-3997-7

    Article  CAS  Google Scholar 

  8. H. S. Kim, S. M. George, B. K. Park, S. U. Son, C. G. Kim, and T. M. Chung. Dalton Trans., 2015, 44(5), 2103-2109. https://doi.org/10.1039/C4DT03497J

    Article  CAS  PubMed  Google Scholar 

  9. B. Sedai, M. J. Heeg, and C. H. Winter. J. Organomet. Chem., 2008, 693(23), 3495-3503. https://doi.org/10.1016/j.jorganchem.2008.08.022

    Article  CAS  Google Scholar 

  10. E. Pousaneh, T. Rüffer, K. Assim, V. Dzhagan, J. Noll, D. R. Zahn, L. Mertens, M. Mehring, S. E. Schulz, and H. Lang. RSC Adv., 2018, 8, 19668-19678. https://doi.org/10.1039/c8ra01851k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. N. V. Kuratieva, E. S. Vikulova, and K. V. Zherikova. J. Struct. Chem., 2018, 59(1), 131-135. https://doi.org/10.1134/S0022476618010195

    Article  CAS  Google Scholar 

  12. R. Belcher, C. R. Cranley, J. R. Majer, W. I. Stephen, and P. C. Uden. Anal. Chim. Acta, 1972, 60, 109-116. https://doi.org/10.1016/S0003-2670(01)81889-4

    Article  CAS  Google Scholar 

  13. M. E. Fragala, R. G. Toro, P. Rossi, P. Dapporto, and G. Malandrino. Chem. Mater., 2009, 21(10), 2062-2069. https://doi.org/10.1021/cm802923w

    Article  CAS  Google Scholar 

  14. I. K. Igumenov, T. V. Basova, and V. R. Belosludov. In: Application of Thermodynamics to Biological and Material Science / Ed. T. Mizutani. Rijeka: InTech, 2011, 521-546. https://doi.org/10.5772/13356

    Chapter  Google Scholar 

  15. I. Kazadojev, D. J. Otway, and S. D. Elliott. Chem. Vap. Deposition, 2013, 19(4-6), 117-124. https://doi.org/10.1002/cvde.201207025

    Article  CAS  Google Scholar 

  16. T. F. Mikhailovskaya, A. G. Makarov, N. Y. Selikhova, A. Y. Makarov, E. A. Pritchina, I. Y. Bagryanskaya, E. V. Vorontsova, I. G. Ivanov, V. D. Tikhova, N. P. Gritsan, Yu. G. Slizhov, and A. V. Zibarev. J. Fluorine Chem., 2016, 183, 44-58. https://doi.org/10.1016/j.jfluchem.2016.01.009

    Article  CAS  Google Scholar 

  17. G. M. Sheldrick. Acta Crystallogr., Sect. A., 2015, 71, 3-8. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  18. G. M. Sheldrick. Acta Crystallogr., Sect. C, 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  19. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339-341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  20. S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, and D. Avnir. Coord. Chem. Rev., 2005, 249(17/18), 1693-1708. https://doi.org/10.1016/j.ccr.2005.03.031

    Article  CAS  Google Scholar 

  21. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, and M. A. Spackman. J. Appl. Crystallogr., 2021, 54, 1006-1011. https://doi.org/10.1107/S1600576721002910

    Article  CAS  Google Scholar 

  22. D. Jayatilaka and D. J. Grimwood. In: Computational Science - ICCS 2003: Conf. Proc., Melbourne, Australia and St. Petersburg, Russia, June 2-4, 2003 / Eds. P. M. A. Sloot, D. Abramson, A. V. Bogdanov, Y. E. Gorbachev, J. J. Dongarra, and A. Y. Zomaya. Berlin, Heidelberg: Springer, 2003, Vol. 2660, 142-151. https://doi.org/10.1007/3-540-44864-0_15

    Chapter  Google Scholar 

  23. C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. IUCrJ, 2017, 4(5), 575-587. https://doi.org/10.1107/S205225251700848X

    Article  CAS  Google Scholar 

  24. T. S. Pochekutova, V. K. Khamylov, G. K. Fukin, Y. A. Kurskii, B. I. Petrov, A. S. Shavyrin, and A. V. Arapova. Polyhedron, 2011, 30(12), 1945-1952. https://doi.org/10.1016/j.poly.2011.04.046

    Article  CAS  Google Scholar 

  25. S. I. Dorovskikh, E. A. Bykova, N. V. Kuratieva, L. N. Zelenina, Y. V. Shubin, N. B. Morozova, and I. K. Igumenov. J. Organomet. Chem., 2012, 698, 22-27. https://doi.org/10.1016/j.jorganchem.2011.10.020

    Article  CAS  Google Scholar 

  26. M. Klotzsche, D. Barreca, L. Bigiani, R. Seraglia, A. Gasparotto, L. Vanin, C. Jandl, A. Pöthig, M. Roverso, S. Bogialli, G. Tabacchi, E. Fois, E. Callone, and C. Maccato. Dalton Trans., 2021, 50(30), 10374-10385. https://doi.org/10.1039/D1DT01650D

    Article  CAS  PubMed  Google Scholar 

  27. J. R. Babcock, D. D. Benson, A. Wang, N. L. Edleman, J. A. Belot, M. V. Metz, and T. J. Marks. Chem. Vap. Deposition, 2000, 6(4), 180-183. https://doi.org/10.1002/1521-3862(200008)6:4<180::AID-CVDE180>3.0.CO;2-5

    Article  CAS  Google Scholar 

  28. K. V. Zherikova, E. S. Vikulova, A. M. Makarenko, E. A. Rikhter, and L. N. Zelenina. Thermochim. Acta, 2020, 689, 178643. https://doi.org/10.1016/j.tca.2020.178643

    Article  CAS  Google Scholar 

  29. E. S. Vikulova, D. A. Piryazev, K. V. Zherikova, N. I. Alferova, N. B. Morozova, and I. K. Igumenov. J. Struct. Chem., 2013, 54(5), 883-889. https://doi.org/10.1134/S0022476613050077

    Article  CAS  Google Scholar 

  30. S. Brahma, M. Srinidhi, S. A. Shivashankar, T. Narasimhamurthy, and R. S. Rathore. J. Mol. Struct., 2013, 1035, 416-420. https://doi.org/10.1016/j.molstruc.2012.11.038

    Article  CAS  Google Scholar 

  31. T. Hatanpää, J. Kansikas, I. Mutikainen, and M. Leskelä. Inorg. Chem., 2001, 40(4), 788-794. https://doi.org/10.1021/ic010160r

    Article  CAS  Google Scholar 

  32. S. Delgado, A. Munoz, M. E. Medina, and C. J. Pastor. Inorg. Chim. Acta, 2006, 359(1), 109-117. https://doi.org/10.1016/j.ica.2005.10.018

    Article  CAS  Google Scholar 

  33. C. Maccato, L. Bigiani, G. Carraro, A. Gasparotto, R. Seraglia, J. Kim, A. Devi, G. Tabacchi, E. Fois, G. Pace, V. Di Noto, and D. Barreca. Chem. – Eur. J., 2017, 23(71), 17954-17963. https://doi.org/10.1002/chem.201703423

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was funded by the Russian Science Foundation (project 21-73-00252).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Vikulova.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 8, 97037.https://doi.org/10.26902/JSC_id97037

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikulova, E.S., Sukhikh, A.S., Mikhaylova, M.A. et al. STRUCTURE AND THERMAL PROPERTIES OF VOLATILE MIXED-LIGAND MAGNESIUM COMPLEXES: EFFECT OF TERT-BUTYL AND PHENYL SUBSTITUTES IN A FLUORINATED β-DIKETONATE. J Struct Chem 63, 1323–1332 (2022). https://doi.org/10.1134/S0022476622080133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622080133

Keywords

Navigation