Skip to main content
Log in

STRUCTURAL COMPLEXITY OF POLYMORPHS OF CALCIUM CARBONATE AND ITS CRYSTALLINE HYDRATES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The information content per contact in the net of contacts and in the critical net of structural units of CaCO3 crystal modifications and CaCO3 crystalline hydrates is calculated. Critical coordination numbers CNcrit and \(\text{CN}'_{\text{crit}}\) are determined by analysing the solid angles of Voronoi–Dirichlet polyhedra (VDPs) constructed for the center of mass of each structural unit. The following topological types are determined for all critical nets: pcu (primitive cubic packing) for calcite, postaragonite, sra (SrAl2) for aragonite, pts (PtS) for vaterite, qtz (α- and β-quartz) for monohydrocalcite. In all structures, except for ikaite, the number of symmetrically independent contacts in the critical net coincides with its exact lower boundary. Thus, this rule of economy holds true not only in molecular crystals but also in other island structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. L. N. Kogarko. Geochem. Int., 2006, 44, 3. https://doi.org/10.1134/S0016702906010022

    Article  Google Scholar 

  2. È. P. Solotchina and P. A. Solotchin. J. Struct. Chem., 2014, 55, 779. https://doi.org/10.1134/S0022476614040295

    Article  CAS  Google Scholar 

  3. N. Tateno and A. Kyono. J. Mineral. Petrol. Sci., 2014, 109, 157. https://doi.org/10.2465/jmps.140320

    Article  CAS  Google Scholar 

  4. P. N. Gavryushkin, A. B. Belonoshko, N. Sagatov, D. Sagatova, E. Zhitova, M. G. Krzhizhanovskaya, A. Rečnik, E. V. Alexandrov, I. V. Medrish, Z. I. Popov, and K. D. Litasov. Cryst. Growth Des., 2021, 21, 65. https://doi.org/10.1021/acs.cgd.0c00589

    Article  CAS  Google Scholar 

  5. B. Pokroy, J. S. Fieramosca, R. B. Von Dreele, A. N. Fitch, E. N. Caspi, and E. Zolotoyabko. Chem. Mater., 2007, 19, 3244. https://doi.org/10.1021/cm070187u

    Article  CAS  Google Scholar 

  6. A. G. Christy. Cryst. Growth Des., 2017, 17, 3567. https://doi.org/10.1021/acs.cgd.7b00481

    Article  CAS  Google Scholar 

  7. A. A. Krylov, E. A. Logvina, T. V. Matveeva, E. M. Prasolov, V. F. Sapega, A. L. Demidova, and M. S. Radchenko. Zap. Ross. Mineral. O-va, 2015, 144, 61. [In Russian]

  8. S. Ono, T. Kikegawa, Y. Ohishi, and J. Tsuchiya. Am. Mineral., 2005, 90, 667. https://doi.org/10.2138/am.2005.1610

    Article  CAS  Google Scholar 

  9. A. R. Oganov, C. W. Glass, and S. Ono. Earth Planet. Sci. Lett., 2006, 241, 95. https://doi.org/10.1016/j.epsl.2005.10.014

    Article  CAS  Google Scholar 

  10. M. Merlini, M. Hanfland, and W. A. Crichton. Earth Planet. Sci. Lett., 2012, 333/334, 265. https://doi.org/10.1016/j.epsl.2012.04.036

    Article  CAS  Google Scholar 

  11. P. N. Gavryushkin, N. S. Martirosyan, T. M. Inerbaev, Z. I. Popov, S. V. Rashchenko, A. Yu. Likhacheva, S. S. Lobanov, A. F. Goncharov, V. B. Prakapenka, and K. D. Litasov. Cryst. Growth Des., 2017, 17, 6291. https://doi.org/10.1021/acs.cgd.7b00977

    Article  CAS  Google Scholar 

  12. P. N. Gavryushkin, N. Sagatov, A. B. Belonoshko, M. V. Banaev, and K. D. Litasov. J. Phys. Chem. C, 2020, 124, 26467. https://doi.org/10.1021/acs.jpcc.0c08309

    Article  CAS  Google Scholar 

  13. D. Sagatova, A. Shatskiy, N. Sagatov, P. N. Gavryushkin, and K. D. Litasov. Lithos, 2020, 370/371, 105637. https://doi.org/10.1016/j.lithos.2020.105637

    Article  CAS  Google Scholar 

  14. D. N. Sagatova, A. F. Shatskiy, P. N. Gavryushkin, N. E. Sagatov, and K. D. Litasov. ACS Earth Space Chem., 2021, 5, 1709. https://doi.org/10.1021/acsearthspacechem.1c00065

    Article  CAS  Google Scholar 

  15. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina. Crystallogr. Rep., 2011, 56, 935. https://doi.org/10.1134/S1063774511060046

    Article  CAS  Google Scholar 

  16. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina. J. Struct. Chem., 2012, 53, 55. https://doi.org/10.1134/S0022476612070086

    Article  CAS  Google Scholar 

  17. S. V. Borisov, N. V. Pervukhina, and S. A. Magarill. Struct. Chem., 2016, 27, 1673. https://doi.org/10.1007/s11224-016-0799-5

    Article  CAS  Google Scholar 

  18. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina. Russ. Chem. Rev., 2015, 84, 393. https://doi.org/10.1070/RCR4479

    Article  CAS  Google Scholar 

  19. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina. Crystallogr. Rep., 2019, 64, 30. https://doi.org/10.1134/S1063774519010036

    Article  CAS  Google Scholar 

  20. Ya. O. Shablovsky. Mineralogy, 2019, 5(3), 3. https://doi.org/10.35597/2313-545X-2019-5-3-3-10

    Article  Google Scholar 

  21. Ya. O. Shablovsky. Mineralogy, 2019, 5(2), 3. https://doi.org/10.35597/2313-545X-2019-5-2-3-9

    Article  Google Scholar 

  22. S. V. Krivovichev. Acta Crystallogr., Sect. B: Struct. Sci., 2016, 72, 274. https://doi.org/10.1107/s205252061501906x

    Article  CAS  Google Scholar 

  23. S. Krivovichev. Acta Crystallogr., Sect. A: Found. Adv., 2012, 68, 393. https://doi.org/10.1107/S0108767312012044

    Article  CAS  Google Scholar 

  24. D. S. Sabirov and I. S. Shepelevich. Entropy, 2021, 23, 1240. https://doi.org/10.3390/e23101240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. E. A. Lord and A. M. Banaru. Moscow Univ. Chem. Bull., 2012, 67, 50. https://doi.org/10.3103/S0027131412020034

    Article  Google Scholar 

  26. A. M. Banaru and V. R. Shiroky. Crystallogr. Rep., 2019, 64, 201. https://doi.org/10.1134/S1063774519020044

    Article  CAS  Google Scholar 

  27. A. M. Banaru and V. R. Shiroky. Crystallogr. Rep., 2020, 65, 417. https://doi.org/10.1134/S1063774520030050

    Article  CAS  Google Scholar 

  28. A. M. Banaru. Moscow Univ. Chem. Bull., 2019, 74, 101. https://doi.org/10.3103/S0027131419030039

    Article  Google Scholar 

  29. A. M. Banaru, V. R. Shiroky, and D. A. Banaru. Crystallogr. Rep., 2021, 66, 913. https://doi.org/10.1134/S1063774521060043

    Article  CAS  Google Scholar 

  30. N. Dolbilin. Struct. Chem., 2016, 27, 1725. https://doi.org/10.1007/s11224-016-0832-8

    Article  CAS  Google Scholar 

  31. I. A. Baburin, M. Bouniaev, N. Dolbilin, N. Yu. Erokhovets, A. Garber, S. V. Krivovichev, and E. Schulte. Acta Crystallogr., Sect. A: Found. Adv., 2018, 74, 616. https://doi.org/10.1107/s2053273318012135

    Article  CAS  Google Scholar 

  32. V. A. Blatov. Crystallogr. Rev., 2004, 10, 249. https://doi.org/10.1080/08893110412331323170

    Article  CAS  Google Scholar 

  33. V. A. Blatov. J. Struct. Chem., 2009, 50, 160. https://doi.org/10.1007/s10947-009-0204-y

    Article  CAS  Google Scholar 

  34. M. W. Anderson, J. T. Gebbie-Rayet, A. R. Hill, N. Farida, M. P. Attfield, P. Cubillas, V. A. Blatov, D. M. Proserpio, D. Akporiaye, B. Arstad, and J. D. Gale. Nature, 2017, 544, 456. https://doi.org/10.1038/nature21684

    Article  CAS  PubMed  Google Scholar 

  35. V. A. Blatov and Y. A. Zakutkin. Z. Kristallogr. – Cryst. Mater., 2002, 217, 464. https://doi.org/doi:10.1524/zkri.217.9.464.22882

    Article  CAS  Google Scholar 

  36. A. Banaru and A. Kochnev. Stud. Univ. Babes-Bolyai, Chem., 2017, 62, 121. https://doi.org/10.24193/subbchem.2017.1.10

    Article  CAS  Google Scholar 

  37. A. M. Banaru and D. M. Gridin. Moscow Univ. Chem. Bull., 2019, 74, 265. https://doi.org/10.3103/S0027131419060051

    Article  Google Scholar 

  38. D. M. Gridin and A. M. Banaru. Moscow Univ. Chem. Bull., 2020, 75, 354. https://doi.org/10.3103/S0027131420060115

    Article  Google Scholar 

  39. J. P. R. De Villiers. Am. Mineral., 1971, 56, 758.

  40. E. Mugnaioli, I. Andrusenko, T. Schüler, N. Loges, R. E. Dinnebier, M. Panthöfer, W. Tremel, and U. Kolb. Angew. Chem. Int. Ed., 2012, 51, 7041. https://doi.org/10.1002/anie.201200845

    Article  CAS  Google Scholar 

  41. S. Gražulis, A. Daškevič, A. Merkys, D. Chateigner, L. Lutterotti, M. Quirós, N. R. Serebryanaya, P. Moeck, R. T. Downs, and A. Le Bail. Nucleic Acids Res., 2012, 40, D420. https://doi.org/10.1093/nar/gkr900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. R. T. Downs and M. Hall-Wallace. Am. Mineral., 2003, 88, 247.

  43. V. A. Blatov, A. P. Shevchenko, and D. M. Proserpio. Cryst. Growth Des., 2014, 14, 3576. https://doi.org/10.1021/cg500498k

    Article  CAS  Google Scholar 

  44. M. OKeeffe, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi. Acc. Chem. Res., 2008, 41, 1782. https://doi.org/10.1021/ar800124u

    Article  CAS  PubMed  Google Scholar 

  45. Topcryst: The Samara Topological Data Center. https://topcryst.com

  46. V. A. Blatov, M. OKeeffe, and D. M. Proserpio. CrystEngComm, 2010, 12, 44. https://doi.org/10.1039/b910671e

    Article  CAS  Google Scholar 

  47. V. A. Blatov, A. P. Shevchenko, and V. N. Serenzhkin. Acta Crystallogr., Sect. A, 1995, 51, 909. https://doi.org/10.1107/S0108767395006799

    Article  Google Scholar 

  48. A. M. Banaru, S. M. Aksenov, and S. V. Krivovichev. Symmetry, 2021, 13, 1399.

  49. A. M. Banaru. Crystallogr. Rep., 2018, 63, 1077. https://doi.org/10.1134/S1063774518070052

    Article  CAS  Google Scholar 

  50. W. F. Kolbe and A. Smakula. Phys. Rev., 1961, 124, 1754. https://doi.org/10.1103/PhysRev.124.1754

    Article  CAS  Google Scholar 

  51. A. M. Banaru, S. M. Aksenov, and D. A. Banaru. Moscow Univ. Chem. Bull., 2021, 76, 325. https://doi.org/10.3103/S0027131421050023

    Article  Google Scholar 

  52. V. K. Belsky, O. N. Zorkaya, and P. M. Zorky. Acta Crystallogr., Sect. A, 1995, 51, 473. https://doi.org/10.1107/S0108767394013140

    Article  Google Scholar 

  53. V. A. Blatov and D. M. Proserpio. Periodic-Graph Approaches in Crystal Structure Prediction. In: Modern Methods of Crystal Structure Prediction / Ed. A.R. Oganov. Wiley-VCH, 2010, 1-28. https://doi.org/10.1002/9783527632831.ch1

    Article  Google Scholar 

  54. J. G. Eon. Acta Crystallogr., Sect. A: Found. Adv., 2016, 72, 376. https://doi.org/10.1107/S2053273316003867

    Article  CAS  Google Scholar 

  55. W. Hornfeck. Acta Crystallogr., Sect. A: Found. Adv., 2020, 76, 534. https://doi.org/10.1107/S2053273320006634a

  56. W. Hornfeck. Z. Kristallogr. – Cryst. Mater., 2022. https://doi.org/doi:10.1515/zkri-2021-2062

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially funded by the Russian Science Foundation, grant No. 20-77-10065 (topological analysis).

The information indices were calculated by D. A. Banaru within the State Assignment for Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Banaru.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 8, 96300.https://doi.org/10.26902/JSC_id96300

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banaru, D.A., Banaru, A.M. & Aksenov, S.M. STRUCTURAL COMPLEXITY OF POLYMORPHS OF CALCIUM CARBONATE AND ITS CRYSTALLINE HYDRATES. J Struct Chem 63, 1291–1303 (2022). https://doi.org/10.1134/S0022476622080108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622080108

Keywords

Navigation