Skip to main content

CVD SYNTHESIS AND THE STRUCTURE OF VERTICALLY ALIGNED CNT ARRAYS

Abstract

The structure and morphology of vertically aligned CNT (VACNT) arrays grown by CVD on Fe–Al2O3/Si(001) substrates are studied using scanning and high-resolution transmission electron microscopy (HRTEM) methods and Raman scattering. It is established that reproducible growth of continuous VACNT arrays is achieved only if the deposited Fe layer is at least 2 nm thick, while the particle size of the catalyst formed by annealing at 700 °C varies in a range of 2-10 nm and the array consists mainly of single- and double-walled CNTs with a diameter of 1-6 nm. The Raman spectrum is characterized by the presence of a radial breathing mode in the region 95-232 cm–1 and an intense G mode that is split into peaks at 1594 cm–1 and 1568 cm–1 upon laser excitation at the wavelength λ = 785 nm. According to the literature data, both modes indicate predominantly semiconductor nature of tubes in the array. The measured surface resistance of the VACNT array is 320±20 Ω/□.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. P. J. F. Harris. Carbon Nanotube Science. Synthesis, Properties and Applications. Cambridge University Press, 2012.

  2. P. Sharma, V. Pavelyev, S. Kumar, P. Mishra, S. S. Islam, and N. Tripathi. J. Mater. Sci: Mater. Electron., 2020, 31, 4399. https://doi.org/10.1007/s10854-020-03021-6

    CAS  Article  Google Scholar 

  3. Q. Liu, X. Shi, Q. Jiang, R. Li, S. Zhong, and R. Zhang. EcoMat, 2021, 3, e12118. https://doi.org/10.1002/eom2.12118

    Article  Google Scholar 

  4. Sh. Huang, X. Du, M. Ma, and L. Xiong. Nanotechnol. Rev., 2021, 10, 1592. https://doi.org/10.1515/ntrev-2021-0102.

    CAS  Article  Google Scholar 

  5. A. Jorio and R. Saito. J. Appl. Phys., 2021, 129, 021102. https://doi.org /10.1063/5.0030809.

    CAS  Article  Google Scholar 

  6. R. Rao, C. L. Pint, A. E. Islam, R. S. Weatherup, S. Hofmann, E. R. Meshot, F. Wu, C. Zhou, N. Dee, P. B. Amama, J. Carpena-Nuñez, W. Shi, D. L. Plata, E. S. Penev, B. I. Yakobson, P. B. Balbuena, C. Bichara, D. N. Futaba, S. Noda, H. Shin, K. S. Kim, B. Simard, F. Mirri, M. Pasquali, F. Fornasiero, E. I. Kauppinen, M. Arnold, B. A. Cola, P. Nikolaev, S. Arepalli, H. M. Cheng, D. N. Zakharov, E. A. Stach, J. Zhang, F. Wei, M. Terrones, D. B. Geohegan, B. Maruyama, S. Maruyama, Y. Li, W. W. Adams, and A. J. Hart. ACS Nano, 2018, 12(12), 11756-11784. https://doi.org/10.1021/acsnano.8b06511

    CAS  Article  PubMed  Google Scholar 

  7. D. V. Sheglov, M. A. Demyanenko, O. I. Semenova, S. V. Rodyakin, D. A. Nasimov, S. V. Sitnikov, D. I. Rogilo, L. I. Fedina, A. L. Aseev, and A. V. Latyshev. Tekh. Radiosvyazi, 2021, 51, 75. https://doi.org/10.33286/2075-8693-2021-51-75-88 [In Russian]

    Article  Google Scholar 

  8. E. R. Meshot, D. L. Plata, S. Tawfick, Y. Zhang, E. A. Verploegen, and A. J. Hart. ACS Nano, 2009, 3, 2477. https://doi.org/10.1021/nn900446a

    CAS  Article  PubMed  Google Scholar 

  9. S. Yasuda, T. Hiraoka, Don N. Futaba, T. Yamada, M. Yumura, and K. Hata. Nano Lett., 2009, 9, 769. https://doi.org/10.1021/nl803389v

    CAS  Article  PubMed  Google Scholar 

  10. K. Hata, Don N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima. Science, 2004, 306, 1362. https://doi.org/10.1126/science.1104962

    CAS  Article  PubMed  Google Scholar 

  11. G. Chen, R. C. Davis, D. N. Futaba, S. Sakurai, K. Kobashi, M. Yumura, and K. Hata. Nanoscale, 2016, 8(1), 162-171. https://doi.org/10.1039/c5nr05537g

    CAS  Article  PubMed  Google Scholar 

  12. F. Yang, M. Wang, D. Zhang, J. Yang, M. Zheng, and Y. Li. Chem. Rev., 2020, 120(5), 2693-2758. https://doi.org/10.1021/acs.chemrev.9b00835

    CAS  Article  PubMed  Google Scholar 

  13. L. Qu and L. Dai. Adv. Mater. 2007, 19, 3844. https://doi.org/10.1002/adma.200700023

    CAS  Article  Google Scholar 

  14. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio. Phys. Rep., 2005, 409, 47. https://doi.org/10.1016/j.physrep.2004.10.006

    Article  Google Scholar 

  15. Y. Maeda, S. Kimura, M. Kanda, Y. Hirashima, T. Hasegawa, T. Wakahara, Y. Lian, T. Nakahodo, T. Tsuchiya, T. Akasaka, J. Lu, X. Zhang, Zhengxiang Gao, Y. Yu, S. Nagase, S. Kazaoui, N. Minami, T. Shimizu, H. Tokumoto, and R. Saito. J. Am. Chem. Soc., 2005, 127(29), 10287-10290. https://doi.org/10.1021/ja051774o

    CAS  Article  PubMed  Google Scholar 

  16. F. Villalpando-Paez, H. Son, D. Nezich, Y. P. Hsieh, J. Kong, Y. A. Kim, D. Shimamoto, H. Muramatsu, T. Hayashi, M. Endo, M. Terrones, and M. S. Dresselhaus. Nano Lett., 2008, 8(11), 3879-3886. https://doi.org/10.1021/nl802306t

    CAS  Article  PubMed  Google Scholar 

  17. L. Shi, J. Wei, K. Yanagi, T. Saito, K. Cao, U. Kaiser, P. Ayala, and T. Pichler. Nanoscale, 2018, 10(45), 21254-21261. https://doi.org/10.1039/c8nr06925e

    CAS  Article  PubMed  Google Scholar 

  18. J. Zhang, Y. Tang, Y. Yi, M. Zhou, K. Ma, W. Wu, C. Wang, Y. Zhao, B. Luo, and Z. Wang. Chin. J. Chem. Phys., 2015, 28(5), 617-622. https://doi.org/10.1063/1674-0068/28/cjcp1502021

    CAS  Article  Google Scholar 

  19. G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J. P. McVittie, Y. Nishi, J. Gibbons, and H. Dai. PNAS, 2005, 102, 16141. https://doi.org/10.1073/pnas.0507064102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. W. Zhou, Y. H. Ooi, R. Russo, P. Papanek, D. E. Luzzi, J. E. Fischer, M. J. Bronikowski, P. A. Willis, and R. E. Smalley. Chem. Phys. Lett., 2001, 350(1/2), 6-14. https://doi.org/10.1016/s0009-2614(01)01237-4

    CAS  Article  Google Scholar 

  21. K.-N. Cheng, Y.-H. Lin, and G.-R. Lin. Laser Phys., 2013, 23, 045105. https://iopscience.iop.org/1555-6611/23/4/045105

    CAS  Article  Google Scholar 

  22. P. Castrucci, F. Tombolini, M. Scarselli, E. Speiser, S. Del Gobbo, W. Richter, M. De Crescenzi, M. Diociaiuti, E. Gatto, and M. Venanzi. Appl. Phys. Lett., 2006, 89(25), 253107. https://doi.org/10.1063/1.2408648

    CAS  Article  Google Scholar 

  23. T. N. Smetyukhova, E. A. Vysotina, D. O. Monakhov, S. K. Sigalayev, V. E. Arkhipov, and A. V. Okotrub. Inorg. Mater. Appl. Res., 2021, 12, 1164. https://doi.org/10.1134/S2075113321050385

    Article  Google Scholar 

Download references

Funding

This work was conducted within the State Assignment 20411.1950192501.11.003 of 29.12.20 (the code 17705596339200009540) using the equipment of ISP Center of shared-use facility “Nanostructures”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Semenova.

Ethics declarations

The authors declare that they have no conflicts of interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Semenova, O.I., Fedina, L.I., Gutakovskii, A.K. et al. CVD SYNTHESIS AND THE STRUCTURE OF VERTICALLY ALIGNED CNT ARRAYS. J Struct Chem 63, 1145–1152 (2022). https://doi.org/10.1134/S0022476622070095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622070095

Keywords

  • carbon nanotubes
  • CVD process
  • CNT array
  • high-resolution transmission electron microscopy
  • scanning electron microscopy
  • Raman scattering.