Skip to main content

DEPOSITION OF PtxIr(1–x) FILM STRUCTURES BY MOCVD FROM A COMBINATION OF PRECURSORS Me3Pt(acac)Py AND Ir(CO)2(acac)

Abstract

MOCVD processes of the deposition of PtxIr(1–x) films in the presence of H2 and O2 in the temperature range 260-300 °C on Si and Ti substrates using a combination of precursors Me3Pt(acac)Py and Ir(CO)2(acac) (acac = acetylacetonato(-), Py = pyridine) are studied. According to the powder XRD data, the films are usually solid solutions with the PtxIr(1–x) composition. The samples prepared in the presence of O2 show the minimal contents of impurities, homogeneous composition, and the Pt:Ir ratio close to the one experimentally specified. In the presence of H2, Ir-enriched PtxIr(1–x) layers with a non-uniform distribution of metals over the thickness are formed in the temperature range 280-300 °C. The surface of PtxIr(1–x) film structures prepared in the presence of hydrogen is formed by small (up to 10 nm in size) particles or 20-32 nm large particle agglomerates prepared in the presence of oxygen. The PtxIr(1–x) layers have a predominantly columnar structure. The structure of films deposited in an oxygen atmosphere is less dense than that of the layers synthesized under similar conditions in a hydrogen atmosphere. The thickness of the films prepared in H2 or O2 falls within intervals 300-450 nm and 750-800 nm, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. S. F. Cogan. Annu. Rev. Biomed. Eng., 2008, 10, 275. https://doi.org/10.1146/annurev.bioeng.10.061807.160518

    CAS  Article  PubMed  Google Scholar 

  2. A. Cowley. Platinum Met. Rev., 2011, 55(2), 98. https://doi.org/10.1595/147106711x566816

    Article  Google Scholar 

  3. P. Kúš, A. Ostroverkh, I. Khalakhan, R. Fiala, Y. Kosto, B. Šmíd, and V. Matolín. Int. J. Hydr Energy, 2019, 44(31), 16087. https://doi.org/10.1016/j.ijhydene.2019.04.216

    CAS  Article  Google Scholar 

  4. S. Butcha, S. Assavapanumat, S. Ittisanronnachai, V. Lapeyre, C. Wattanakit, and A. Kuhn. Nat. Commun., 2021, 12(1), 1. https://doi.org/10.1038/s41467-021-21603-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. S. Assavapanumat, S. Butcha, S. Ittisanronnachai, A. Kuhn, and C. Wattanakit. Chem. – Asian J., 2021, 16(21), 3345. https://doi.org/10.1002/asia.202100966

    CAS  Article  PubMed  Google Scholar 

  6. H. Yuan, W.J. Yoo, H. Miyamura, and S. Kobayashi. Adv. Synth. Catal., 2012, 354(16), 2899. https://doi.org/10.1002/adsc.201200880

    CAS  Article  Google Scholar 

  7. S. F. Tseng, C. T. Lee, K. C. Huang, D. Chiang, C. Y. Huang, and C. P. Chou. J. Nanosci. Nanotech., 2011, 11(10), 8682. https://doi.org/10.1166/jnn.2011.3502

    CAS  Article  Google Scholar 

  8. A. Saksena, S. Prünte, D. M. Holzapfel, L. Patterer, and J. M. Schneider. Appl. Surf. Sci., 2021, 548, 149282. https://doi.org/10.1016/j.apsusc.2021.149282

    CAS  Article  Google Scholar 

  9. E. Della Valle, E. J. Welle, C. A. Chestek, and J. D. Weiland. J. Neur. Eng., 2021, 18(5), 054001. https://doi.org/10.1088/1741-2552/ac20bb

    Article  Google Scholar 

  10. A. N. Dalrymple, M. Huynh, B. A. Nayagam, C. D, Lee, G. R., Weiland, A. Petrossians, and R. K. Shepherd. J. Neur. Eng., 2020, 17(3), 036012. https://doi.org/10.1088/1741-2552/ab933d

    Article  PubMed  Google Scholar 

  11. S. H. Lee, J. H. Jung, Y. M. Chae, J. K. F. Suh, and J. Y. Kang. J. Micromech. Microeng., 2010, 20(3), 035015. https://doi.org/10.1088/0960-1317/20/3/035015

    CAS  Article  Google Scholar 

  12. A. Petrossians, J. J. Whalen, J. D. Weiland, and F. Mansfeld. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2011), Boston, Massachusetts, USA, Aug 30-Sept 3, 2011. IEEE, 2011, 3001. https://doi.org/10.1109/IEMBS.2011.6090823

    Article  PubMed  Google Scholar 

  13. T. V. Basova, E. S. Vikulova, S. I. Dorovskikh, A. Hassan, and N. B. Morozova. Mater. Des., 2021, 204, 109672. https://doi.org/10.1016/j.matdes.2021.109672

    CAS  Article  Google Scholar 

  14. K. I. Karakovskaya, S. I. Dorovskikh, E. S. Vikulova, I. Y. Ilyin, K. V. Zherikova, T. V. Basova, and N. B. Morozova. Coatings, 2021, 11(1), 78. https://doi.org/10.3390/coatings11010078

    CAS  Article  Google Scholar 

  15. S. I. Dorovskikh, E. S. Vikulova, D. B. Kalnyi, Y. V. Shubin, I. P. Asanov, E. A. Maximovskiy, A. K. Gutakovskiy, N. B. Morozova, and T. V. Basova. J. Mater. Sci.: Mater. Med., 2019, 30(6), 69. https://doi.org/10.1007/s10856-019-6275-1

    CAS  Article  Google Scholar 

  16. S. C. Colindres, J. R. V. García, J. A. T. Antonio, and C. A. Chavez. J. Alloys Compd., 2009, 483, 406. https://doi.org/10.1016/j.jallcom.2008.08.097

    CAS  Article  Google Scholar 

  17. C. Jackson, G. T. Smith, N. Mpofu, J. M. Dawson, T. Khoza, C. September, and P. B. Levecque. RSC Adv., 2020, 10(34), 19982. https://doi.org/10.1039/D0RA03001E

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. N. V. Gelfond, P. S. Galkin, I. K. Igumenov, N. B. Morozova, N. E. Fedotova, G. I. Zharkova, and Y. V. Shubin. J. Phys., Colloq., 2001, 11(3), 593. https://doi.org/10.1051/jp4:2001375

    Article  Google Scholar 

  19. E. A. Kovaleva, A. A. Kuzubov, E. S. Vikulova, T. V. Basova, and N. B. Morozova. J. Mol. Struct., 2017, 1146, 677. https://doi.org/10.1016/j.molstruc.2017.06.059

    CAS  Article  Google Scholar 

  20. S. I. Dorovskikh, G. I. Zharkova, A. E. Turgambaeva, V. V. Krisyuk, and N. B. Morozova. Appl. Organomet. Chem., 2017, 31(7), e3654. https://doi.org/10.1002/aoc.3654

    CAS  Article  Google Scholar 

  21. B. D. Cullity. Elements of X-Ray Diffraction. Massachusetts, USA: Addison-Wesley, 1978, 350-379.

  22. W. Kraus and G. Nolze. J. Appl. Crystallogr., 1996, 9, 301. https://doi.org/10.1107/S0021889895014920

    CAS  Article  Google Scholar 

  23. M. N. Magomedov. Inorg. Mater., 2020, 56(9), 903-908. https://doi.org/10.1134/S0020168520090125

    CAS  Article  Google Scholar 

  24. P. D. Ngo. Failure in Analysis of Integrated Circuits. Boston, MA: Springer, 1999.

  25. D. A. Shirley. Phys. Rev. B, 1972, 5, 4709. https://doi.org/10.1103/PhysRevB.5.4709

    Article  Google Scholar 

  26. C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Taylor, R. H. Raymond, and L. H. Gale. Surf. Interface. Anal., 1981, 3, 211. https://doi.org/10.1002/sia.740030506

    CAS  Article  Google Scholar 

  27. K. V. Zherikova, A. M. Makarenko, K. I. Karakovskaya, L. N. Zelenina, S. V. Sysoev, E. S. Vikulova, and N. B. Morozova. Rus. J. Gen. Chem., 2021, 91(10), 1990. https://doi.org/10.1134/S1070363221100108

    CAS  Article  Google Scholar 

  28. N. P. Lyakishev. Spravochnik. Moscow: Mashinostroenie, 1996, Vol. 3-1, 104. [In Russian]

  29. V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, C. Massué, R. Arrigo, D. Teschner, F. Girgsdies, M. Scherzer, M. T. Greiner, J. Allan, M. Hashagen, G. Weinberg, S. Piccinin, M. Hävecker, A. Knop-Gerickea, and R. Schlögla. Surf. Interface Anal., 2016, 48, 261. https://doi.org/10.1002/sia.5895

    CAS  Article  Google Scholar 

  30. G. P. López, D. G. Castner, and B. D. Ratner. Surf. Interface Anal., 1991, 17, 267. https://doi.org/10.1002/sia.740170508

    Article  Google Scholar 

  31. I. K. Igumenov, N. V. Gelfond, N. B. Morozova, and H. Nizard, Chem. Vap. Deposition, 2007, 13(11), 56. https://doi.org/10.1002/cvde.200706602

    CAS  Article  Google Scholar 

  32. Z. Paál, P. Tétényi, D. Prigge, X. Z. Wang, and G. Ertl. Appl. Surf. Sci., 1983, 14(3/4), 307. https://doi.org/10.1016/0378-5963(83)90045-4

    Article  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Science and Higher Education of the Russian Federation (projects 121031700313-8 and 121031700314-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Dorovskikh.

Ethics declarations

The authors declare that they have no conflicts of interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dorovskikh, S.I., Karakovskaya, K.I., Vikulova, E.S. et al. DEPOSITION OF PtxIr(1–x) FILM STRUCTURES BY MOCVD FROM A COMBINATION OF PRECURSORS Me3Pt(acac)Py AND Ir(CO)2(acac). J Struct Chem 63, 1134–1144 (2022). https://doi.org/10.1134/S0022476622070083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622070083

Keywords

  • bimetallic film structures
  • iridium
  • platinum
  • structure
  • metalorganic chemical vapor deposition.