Skip to main content

STRUCTURAL FEATURES OF HYDROGEN- BONDED ORGANIC FRAMEWORKS BASED ON NICKEL(II) 5,10,15,20-TETRAKIS(4- PHOSPHONATOPHENYL)PORPHYRINATE

Abstract

Two hydrogen-bonded organic frameworks of the composition [((CH3)2NH2)3.5(Ni-H4.5TPPP)]·DMF·H2O (1) and [((CH3)2NH2)4(Ni-H4TPPP)(H2O)3]·DMF·H2O (2) (Ni-HxTPPP is nickel(II) 5,10,15,20-tetrakis(4-phosphonatophenyl)porphyrinate, x is the number of protons of phosphonate groups, DMF is N,N-dimethylformamide) are obtained by crystallization of nickel(II) phosphonatophenylporphyrinate under solvothermal conditions. Crystal structures of 1 and 2 are determined by the single crystal X-ray diffraction analysis. Both frameworks are shown to be stabilized by the formation of numerous intermolecular hydrogen bonds. Partial deprotonation of phosphonate groups causes the formation of anionic frameworks whose charge is compensated by the presence of dimethylammonium cations being solvent destruction products. The system of hydrogen bonds in frameworks 1 and 2 is represented by 2D layers in the ab plane going parallel to open 1D channels. It is established that the occurrence of lattice water in framework 2 leads to an increase in the number of hydrogen bonds and bonding types of porphyrin phosphonate groups, which can affect the proton-conductive properties of the material.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. S. Jeoung, S. Kim, M. Kim, and H. R. Moon. Coord. Chem. Rev., 2020, 420, 213377. https://doi.org/10.1016/j.ccr.2020.213377

    CAS  Article  Google Scholar 

  2. N. Huang, P. Wang, and D. Jiang. Nat. Rev. Mater., 2016, 1(10), 16068. https://doi.org/10.1038/natrevmats.2016.68

    CAS  Article  Google Scholar 

  3. B. Wang, R. B. Lin, Z. Zhang, S. Xiang, and B. Chen. J. Am. Chem. Soc., 2020, 142(34), 14399-14416. https://doi.org/10.1021/jacs.0c06473

    CAS  Article  PubMed  Google Scholar 

  4. C. Stackhouse, J. Ren, C. Shan, A. Nafady, A. M. Al-Enizi, M. Ubaidullah, Z. Niu, and S. Ma. Cryst. Growth Des., 2019, 19(11), 6377-6380. https://doi.org/10.1021/acs.cgd.9b00851

    CAS  Article  Google Scholar 

  5. Q. Yin, Y.-L. Li, L. Li, J. Lü, T.-F. Liu, and R. Cao. ACS Appl. Mater. Interfaces, 2019, 11(19), 17823-17827. https://doi.org/10.1021/acsami.9b03696

    CAS  Article  PubMed  Google Scholar 

  6. X. Zhang, L. Li, J.-X. Wang, H.-M. Wen, R. Krishna, H. Wu, W. Zhou, Z.-N. Chen, B. Li, G. Qian, and B. Chen. J. Am. Chem. Soc., 2020, 142(1), 633-640. https://doi.org/10.1021/jacs.9b12428

    CAS  Article  PubMed  Google Scholar 

  7. S. Cai, H. Shi, Z. Zhang, X. Wang, H. Ma, N. Gan, Q. Wu, Z. Cheng, K. Ling, M. Gu, C. Ma, L. Gu, Z. An, and W. Huang. Angew. Chem., Int. Ed., 2018, 57(15), 4005-4009. https://doi.org/10.1002/anie.201800697

    CAS  Article  Google Scholar 

  8. Y. Han, T. Zhang, X. Chen, Q. Chen, J. Hao, W. Song, Y. Zeng, and P. Xue. ACS Appl. Mater. Interfaces, 2021, 13(27), 32270-32277. https://doi.org/10.1021/acsami.1c08316

    CAS  Article  PubMed  Google Scholar 

  9. W. Gong, D. Chu, H. Jiang, X. Chen, Y. Cui, and Y. Liu. Nat. Commun., 2019, 10(1), 600. https://doi.org/10.1038/s41467-019-08416-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. S. A. Kuznetsova, A. S. Gak, Y. V. Nelyubina, V. A. Larionov, H. Li, M. North, V. P. Zhereb, A. F. Smolyakov, A. O. Dmitrienko, M. G. Medvedev, I. S. Gerasimov, A. S. Saghyan, and Y. N. Belokon. Beilstein J. Org. Chem., 2020, 16, 1124-1134. https://doi.org/10.3762/bjoc.16.99

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. X.-T. He, Y.-H. Luo, D.-L. Hong, F.-H. Chen, Z.-Y. Zheng, C. Wang, J.-Y. Wang, C. Chen, and B.-W. Sun. ACS Appl. Nano Mater., 2019, 2(4), 2437-2445. https://doi.org/10.1021/acsanm.9b00303

    CAS  Article  Google Scholar 

  12. W. Liang, F. Carraro, M. B. Solomon, S. G. Bell, H. Amenitsch, C. J. Sumby, N. G. White, P. Falcaro, and C. J. Doonan. J. Am. Chem. Soc., 2019, 141(36), 14298-14305. https://doi.org/10.1021/jacs.9b06589

    CAS  Article  PubMed  Google Scholar 

  13. G. Yücesan, Y. Zorlu, M. Stricker, and J. Beckmann. Coord. Chem. Rev., 2018, 369, 105-122. https://doi.org/10.1016/j.ccr.2018.05.002

    CAS  Article  Google Scholar 

  14. T. Rhauderwiek, K. Wolkersdörfer, S. Øien-Ødegaard, K.-P. Lillerud, M. Wark, and N. Stock. Chem. Commun., 2018, 54(4), 389-392. https://doi.org/10.1039/C7CC07766A

    CAS  Article  Google Scholar 

  15. T. Rhauderwiek, H. Zhao, P. Hirschle, M. Döblinger, B. Bueken, H. Reinsch, D. De Vos, S. Wuttke, U. Kolb, and N. Stock. Chem. Sci., 2018, 9(24), 5467-5478. https://doi.org/10.1039/C8SC01533C

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. B. Wang, T. Rhauderwiek, A. K. Inge, H. Xu, T. Yang, Z. Huang, N. Stock, and X. Zou. Chem. – Eur. J., 2018, 24(66), 17429-17433. https://doi.org/10.1002/chem.201804133

    CAS  Article  PubMed  Google Scholar 

  17. Y. Y. Enakieva, A. A. Sinelshchikova, M. S. Grigoriev, V. V. Chernyshev, K. A. Kovalenko, I. A. Stenina, A. B. Yaroslavtsev, Y. G. Gorbunova, and A. Y. Tsivadze. Chem. – Eur. J., 2019, 25(45), 10552-10556. https://doi.org/10.1002/chem.201902212

    CAS  Article  PubMed  Google Scholar 

  18. Y. Y. Enakieva, A. A. Sinelshchikova, M. S. Grigoriev, V. V. Chernyshev, K. A. Kovalenko, I. A. Stenina, A. B. Yaroslavtsev, Y. G. Gorbunova, and A. Y. Tsivadze. Chem. – Eur. J., 2021, 27(5), 1598-1602. https://doi.org/10.1002/chem.202003893

    CAS  Article  PubMed  Google Scholar 

  19. Y. Y. Enakieva, E. A. Zhigileva, A. N. Fitch, V. V. Chernyshev, I. A. Stenina, A. B. Yaroslavtsev, A. A. Sinelshchikova, K. A. Kovalenko, Y. G. Gorbunova, and A. Y. Tsivadze. Dalton Trans., 2021, 50, 6549-6560. https://doi.org/10.1039/d1dt00612f

    CAS  Article  PubMed  Google Scholar 

  20. M. M. Ayhan, C. Bayraktar, K. B. Yu, G. Hanna, A. O. Yazaydin, Y. Zorlu, and G. Yücesan. Chem. – Eur. J., 2020, 26(65), 14813-14816. https://doi.org/10.1002/chem.202001917

    CAS  Article  PubMed  Google Scholar 

  21. Y. Wang, J. Yin, D. Liu, C. Gao, Z. Kang, R. Wang, D. Sun, and J. Jiang. J. Mater. Chem. A, 2021, 9(5), 2683-2688. https://doi.org/10.1039/D0TA07207A

    CAS  Article  Google Scholar 

  22. P. Tholen, C. A. Peeples, R. Schaper, C. Bayraktar, T. S. Erkal, M. M. Ayhan, B. Çoşut, J. Beckmann, A. O. Yazaydin, M. Wark, G. Hanna, Y. Zorlu, and G. Yücesan. Nat. Commun., 2020, 11(1), 3180. https://doi.org/10.1038/s41467-020-16977-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Y. G. Gorbunova, Y. Y. Enakieva, M. V. Volostnykh, A. A. Sinelshchikova, I. A. Abdulaeva, K. P. Birin, and A. Y. Tsivadze. Russ. Chem. Rev., 2022, 91. https://doi.org/10.1070/RCR5038

    Article  Google Scholar 

  24. X.-T. He, Y.-H. Luo, Z.-Y. Zheng, C. Wang, J.-Y. Wang, D.-L. Hong, L.-H. Zhai, L.-H. Guo, and B.-W. Sun. ACS Appl. Nano Mater., 2019, 2(12), 7719-7727. https://doi.org/10.1021/acsanm.9b01787

    CAS  Article  Google Scholar 

  25. SAINT-Plus, version 8.40A. Madison, Wisconsin, USA: Bruker AXS Inc., 2019.

  26. SADABS, version 2016/2. Madison, Wisconsin, USA: Bruker AXS Inc., 2016.

  27. G. M. Sheldrick. Acta Crystallogr., Sect. A, 2008, 64(1), 112-122. https://doi.org/10.1107/S0108767307043930

    Article  Google Scholar 

  28. G. M. Sheldrick. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  29. A. L. Spek. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2015, 71, 9-18. https://doi.org/10.1107/S2053229614024929

    CAS  Article  Google Scholar 

  30. T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, and M. Haranczyk. Microporous Mesoporous Mater., 2012, 149(1), 134-141. https://doi.org/10.1016/j.micromeso.2011.08.020

    CAS  Article  Google Scholar 

  31. V. A. Blatov, A. P. Shevchenko, and D. M. Proserpio. Cryst. Growth Des., 2014, 14(7), 3576-3586. https://doi.org/10.1021/cg500498k

    CAS  Article  Google Scholar 

  32. R. I. Zubatyuk, A. A. Sinelshchikova, Y. Y. Enakieva, Y. G. Gorbunova, A. Y. Tsivadze, S. E. Nefedov, A. Bessmertnykh-Lemeune, R. Guilard, and O. V. Shishkin. CrystEngComm, 2014, 16(45), 10428-10438. https://doi.org/10.1039/C4CE01623H

    CAS  Article  Google Scholar 

  33. M. A. Uvarova, A. A. Sinelshchikova, M. A. Golubnichaya, S. E. Nefedov, Y. Y. Enakieva, Y. G. Gorbunova, A. Y. Tsivadze, C. Stern, A. Bessmertnykh-Lemeune, and R. Guilard. Cryst. Growth Des., 2014, 14(11), 5976-5984. https://doi.org/10.1021/cg501157e

    CAS  Article  Google Scholar 

  34. C. J. Kingsbury and M. O. Senge. Coord. Chem. Rev., 2021, 431, 213760. https://doi.org/10.1016/j.ccr.2020.213760

    CAS  Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Sinelshchikova or Yu. Yu. Enakieva.

Ethics declarations

The authors declare that they have no conflicts of interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sinelshchikova, A.A., Enakieva, Y.Y., Grigoriev, M.S. et al. STRUCTURAL FEATURES OF HYDROGEN- BONDED ORGANIC FRAMEWORKS BASED ON NICKEL(II) 5,10,15,20-TETRAKIS(4- PHOSPHONATOPHENYL)PORPHYRINATE. J Struct Chem 63, 874–884 (2022). https://doi.org/10.1134/S002247662206004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662206004X

Keywords

  • porphyrinylphosphonates
  • nickel(II) porphyrinate
  • functionalized porphyrins
  • phosphonic acids
  • hydrogen bond
  • single crystal X-ray diffraction analysis
  • HOF.