Skip to main content
Log in

SUPRAMOLECULAR ASSEMBLIES IN AN UNPRECEDENTED ASYMMETRIC SALAMO-BASED DINUCLEAR NICKEL(II) COMPLEX BEARING TWO DIFFERENT COORDINATION MODES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 2022

This article has been updated

Abstract

An unprecedented dinuclear Ni(II) complex [{Ni2(L)(HL)(μ-OAc)(H2O)}2]·3CH3CH2OH is successfully synthesized by the complexation of an asymmetric salamo-based ligand (H2L) and Ni(II) acetate tetrahydrate and characterized by elemental analyses, UV-Vis and IR spectra, and X-ray crystallography analyses. Surprisingly, in the asymmetric unit of the Ni(II) complex, a fully deprotonated ligand (L)2– unit and a partially deprotonated ligand (HL) unit wrapps two Ni(II) atoms, with the μ-OAc anion bridging two adjacent Ni(II) atoms. The two Ni(II) atoms possess different coordination environments and twisted octahedral geometries. The hexacoordinated Ni(II) atom (Ni1) is located in the N2O4 donor cavity, but another hexacoordinated Ni(II) atom (Ni2) is located in a NO5 donor coordination environment. Meanwhile, a1D chain structure is formed by two N–O⋯π interactions. Hirshfeld surfaces and fluorescent properties are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

REFERENCES

  1. M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. OKeeffe, and O. M. Yaghi. Acc. Chem. Res., 2001, 34, 319-330. https://doi.org/10.1021/ar000034b

    Article  CAS  PubMed  Google Scholar 

  2. P. Zanello, S. Tamburini, P. A. Vigato, and G. A. Mazzocchin. Coord. Chem. Rev., 1987, 77, 165-273. https://doi.org/10.1016/0010-8545(87)85034-8

    Article  CAS  Google Scholar 

  3. P. A. Vigato and S. Tamburini. Coord. Chem. Rev., 2004, 248, 1717-2128. https://doi.org/10.1016/j.cct.2003.09.003

    Article  CAS  Google Scholar 

  4. E. Yousif, A. Majeed, K. A. Sammarrae, N. Salih, J. Salimon, and B. Abdullah. Arab. J. Chem., 2017, 10, 1639-1644. https://doi.org/10.1016/j.arabjc.2013.06.006

    Article  CAS  Google Scholar 

  5. B. K. Kundu, Pragti, S. M. Mobin, and S. Mukhopadhyay. Dalton Trans., 2020, 49, 15481-15503. https://doi.org/10.1039/D0DT02941F

    Article  CAS  PubMed  Google Scholar 

  6. M. Shyamal, P. Mazumdar, S. Maity, S. Samanta, G. P. Sahoo, and A. Misra. ACS Sens., 2016, 1(6), 739-747. https://doi.org/10.1021/acssensors.6b00289

    Article  CAS  Google Scholar 

  7. Y. Wu, W. M. Ding, J. Li, G. Guo, S. Z. Zhang, H. R. Jia, and Y. X. Sun. J. Fluoresc., 2021, 31, 437-446. https://doi.org/10.1007/s10895-020-02677-x

    Article  CAS  PubMed  Google Scholar 

  8. J. Andrez, V. Guidal, R. Scopelliti, J. Pecaut, S. Gambarelli, and M. Mazzanti. J. Am. Chem. Soc., 2017, 139, 8628-8638. https://doi.org/10.1021/jacs.7b03604

    Article  CAS  PubMed  Google Scholar 

  9. S. Z. Zhang, G. Guo, W. M. Ding, J. Li, Y. Wu, H. J. Zhang, J. Q. Guo, and Y. X. Sun. J. Mol. Struct., 2021, 1230(12), 129627. https://doi.org/10.1016/j.molstruc.2020.129627

    Article  CAS  Google Scholar 

  10. M. Jafarian, M. Rashvand avei, M. Khakali, F. Gobal, S. Rayati, and M. G. Mahjani. J. Phys. Chem. C, 2012, 116, 18518-18532. https://doi.org/10.1021/jp305370m

    Article  CAS  Google Scholar 

  11. B. E. Klamm, C. J. Windorff, C. C. Barros, M. L. Marsh, and T. E. A. Schmitt. Inorg. Chem., 2020, 59(1), 23-31. https://doi.org/10.1021/acs.inorgchem.9b00477

    Article  CAS  PubMed  Google Scholar 

  12. M. Chakraborty, A. Mondal, and S. K. Chattopadhyay. New J. Chem., 2020, 44, 12916-12925. https://doi.org/10.1039/D0NJ00719F

    Article  CAS  Google Scholar 

  13. L. K. Das, A. Biswas, C. J. G. Garćía, M. G. B. Drew, and A. Ghosh. Inorg. Chem., 2014, 53(1), 434-445. https://doi.org/10.1021/ic402415b

    Article  CAS  PubMed  Google Scholar 

  14. A. Bhanja, R. Herchel, Z. Trǎvńíce, and D. Ray. Inorg. Chem., 2019, 58(18), 12184-12198. https://doi.org/10.1021/acs.inorgchem.9b01517

    Article  CAS  PubMed  Google Scholar 

  15. S. Akine, T. Taniguchi, and T. Nabeshima. Chem. Lett., 2001, 30(7), 682/683. https://doi.org/10.1246/cl.2001.682

    Article  Google Scholar 

  16. T. Feng, L. L. Li, Y. J. Li, and W. K. Dong. Acta Crystallogr., Sect. B, 2021, 77, 168-181. https://doi.org/10.1107/S2052520620016157

    Article  CAS  Google Scholar 

  17. E. Sinn and C. M. Harris. Coord. Chem. Rev., 1969, 4(4), 391-422. https://doi.org/10.1016/S0010-8545(00)80080-6

    Article  CAS  Google Scholar 

  18. S. Akine and T. Nabeshima. Dalton Trans., 2009, 47, 10395-10408. https://doi.org/10.1039/b910989g

    Article  PubMed  Google Scholar 

  19. R. N. Bian, J. F. Wang, X. Xu, X. Y. Dong, and Y. J. Ding. Appl. Organomet. Chem., 2021, 35, e6040. https://doi.org/10.1002/aoc.6040

    Article  Google Scholar 

  20. S. Akine and T. Nabeshima. Inorg. Chem., 2005, 44, 1205-1207. https://doi.org/10.1021/ic048347g

    Article  CAS  PubMed  Google Scholar 

  21. Y. D. Peng, R. Y. Li, P. Li, and Y. X. Sun. Crystals, 2021, 11, 113. https://doi.org/10.3390/cryst11020113

    Article  CAS  Google Scholar 

  22. X. Xu, Y. J. Li, T. Feng, W. K. Dong, and Y. J. Ding. Luminescence, 2021, 36, 169-179. https://doi.org/10.1002/bio.3932

    Article  CAS  PubMed  Google Scholar 

  23. C. Liu, Z. L. Wei, H. R. Mu, W. K. Dong, and Y. J. Ding. J. Photochem. Photobiol. A, 2020, 397, 112569. https://doi.org/10.1016/j.jphotochem.2020.112569

    Article  CAS  Google Scholar 

  24. P. Li, G. X. Yao, M. Li, and W. K. Dong. Polyhedron, 2021, 195, 114981. https://doi.org/10.1016/j.poly.2020.114981

    Article  CAS  Google Scholar 

  25. M. Yu, Y. Zhang, Y. Q. Pan, and L. Wang. Inorg. Chim. Acta, 2020, 509, 119701. https://doi.org/10.1016/j.ica.2020.119701

    Article  CAS  Google Scholar 

  26. C. Liu, X. X. An, Y. F. Cui, K. F. Xie, and W. K. Dong. Appl. Organometal. Chem., 2020, 34, e5272. https://doi.org/10.1002/aoc.5272

    Article  Google Scholar 

  27. Y. F. Cui, C. Liu, Y. Zhang, and Y. Zhang. Inorg. Nano-Met. Chem., 2021, 51(2), 288-295. https://doi.org/10.1080/24701556.2020.1776735

    Article  CAS  Google Scholar 

  28. X. X. An, Z. Z. Chen, H. R. Mu, and L. Zhao. Inorg. Chim. Acta, 2020, 511, 119823. https://doi.org/10.1016/j.ica.2020.119823

    Article  CAS  Google Scholar 

  29. S. Akine, T. Taniguchi, and T. Nabeshima. J. Am. Chem. Soc., 2006, 128, 15765-15774. https://doi.org/10.1021/ja0646702

    Article  CAS  PubMed  Google Scholar 

  30. S. Akine, T. Tadokoro, and T. Nabeshima. Inorg. Chem., 2012, 51, 11478-11486. https://doi.org/10.1021/ic3012525

    Article  CAS  PubMed  Google Scholar 

  31. J. F. Wang, T. Feng, Y. J. Li, Y. X. Sun, W. K. Dong, and Y. J. Ding. J. Mol. Struct., 2021, 1231, 129950. https://doi.org/10.1016/j.molstruc.2021.129950

    Article  CAS  Google Scholar 

  32. J. F. Wang, X. Xu, R. N. Bian, W. K. Dong, and Y. J. Ding. Inorg. Chim. Acta, 2021, 516, 120095. https://doi.org/10.1016/j.ica.2020.120095

    Article  CAS  Google Scholar 

  33. Y. X. Sun, Y. Q. Pan, X. Xu, and Y. Zhang. Crystals 2019, 9, 607. https://doi.org/10.3390/cryst9120607

    Article  CAS  Google Scholar 

  34. L. W. Zhang, Y. Zhang, Y. F. Cui, M. Yu, and W. K. Dong. Inorg. Chim. Acta, 2020, 506, 119534. https://doi.org/10.1016/j.ica.2020.119534

    Article  CAS  Google Scholar 

  35. Q. P. Kang, X. Y. Li, Z. L. Wei, Y. Zhang, and W. K. Dong. Polyhedron, 2019, 165, 38-50. https://doi.org/10.1016/j.poly.2019.03.008

    Article  CAS  Google Scholar 

  36. Q. P. Kang, X. Y. Li, L. Wang, Y. Zhang, and W. K. Dong. Appl. Organomet. Chem., 2019, 33, e5013. https://doi.org/10.1002/aoc.5013

    Article  Google Scholar 

  37. Q. Zhao, X. X. An, L. Z. Liu, and W. K. Dong. Inorg. Chim. Acta, 2019, 490, 6-15. https://doi.org/10.1016/j.ica.2019.02.040

    Article  CAS  Google Scholar 

  38. J. F. Wang, R. N. Bian, T. Feng, K. F. Xie, L. Wang, and Y. J. Ding. Microchem. J., 2021, 160, 105676. https://doi.org/10.1016/j.microc.2020.105676

    Article  CAS  Google Scholar 

  39. R. N. Bian, X. Xu, T. Feng, and W. K. Dong. Inorg. Chim. Acta, 2021, 516, 120098. https://doi.org/10.1016/j.ica.2020.120098

    Article  CAS  Google Scholar 

  40. H. R. Mu, M. Yu, L. Wang, Y. Zhang, and W. K. Dong. Phosphorus, Sulfur Silicon Relat. Elem., 2020, 195(9), 730-739. https://doi.org/10.1080/10426507.2020.1756807

    Article  CAS  Google Scholar 

  41. L. Wang, Z. L. Wei, C. Liu, W. K. Dong, and J. X. Ru. Spectrochim. Acta, Part A, 2020, 239, 118496. https://doi.org/10.1016/j.saa.2020.118496

    Article  CAS  Google Scholar 

  42. L. Wang, Z. L. Wei, Z. Z. Chen, C. Liu, W. K. Dong, and Y. J. Ding. Microchem. J., 2020, 155, 104801. https://doi.org/10.1016/j.microc.2020.104801

    Article  CAS  Google Scholar 

  43. R. Y. Li, Z. L. Wei, L. Wang, Y. Zhang, and J. X. Ru. Spectrochim. Acta, Part A, 2020, 228, 117775. https://doi.org/10.1016/j.saa.2019.117775

    Article  CAS  Google Scholar 

  44. Z. L. Wei, L. Wang, J. F. Wang, W. T. Guo, Y. Zhang, and W. K. Dong. Spectrochim. Acta, Part A, 2020, 228, 117775. https://doi.org/10.1016/j.saa.2019.117775

    Article  CAS  Google Scholar 

  45. Y. Q. Pan, X. Xu, Y. Zhang, Y. Zhang, and W. K. Dong. Spectrochim. Acta, Part A, 2020, 229, 117927. https://doi.org/10.1016/j.saa.2019.117927

    Article  CAS  Google Scholar 

  46. L. Wang, Y. Q. Pan, J. F. Wang, Y. Zhang, and Y. J. Ding. J. Photochem. Photobiol. A. 2020, 400, 112719. https://doi.org/10.1016/j.jphotochem.2020.112719

    Article  CAS  Google Scholar 

  47. L. Z. Liu, L. Wang, M. Yu, Q. Zhao, Y. Zhang, Y. X. Sun, and W. K. Dong. Spectrochim. Acta, Part A, 2019, 222, 117209. https://doi.org/10.1016/j.saa.2019.117209

    Article  CAS  Google Scholar 

  48. X. Xu, T. Feng, S. S. Feng, and W. K. Dong. Appl. Organomet. Chem., 2021, 35, e6057. https://doi.org/10.1002/aoc.6057

    Article  Google Scholar 

  49. X. X. An, Q. Zhao, H. R. Mu, and W. K. Dong. Crystals, 2019, 9, 101. https://doi.org/10.3390/cryst9020101

    Article  CAS  Google Scholar 

  50. Y. J. Li, S. Z. Guo, T. Feng, K. F. Xie, and W. K. Dong. J. Mol. Struct., 2021, 1228, 129796. https://doi.org/10.1016/j.molstruc.2020.129796

    Article  CAS  Google Scholar 

  51. W. K. Dong, Y. X. Sun, S. J. Xing, Y. Wang, and X. H. Gao. Z. Naturforsch. B: J. Chem. Sci., 2012, 67, 197-203. https://doi.org/10.1515/znb-2012-0303

    Article  CAS  Google Scholar 

  52. G. M. Sheldrick. Acta Crystallor., Sect. A, 2015, 71, 3-8. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  53. G. M. Sheldrick. Acta Crystallor., Sect. C, 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  54. L. Krause, R. H. Irmer, G. M. Sheldrick, and D. Stalke. J. Appl. Crystallogr., 2015, 48, 3-10. https://doi.org/10.1107/S1600576714022985

    Article  CAS  Google Scholar 

  55. S. Akine and T. Nabeshima. Inorg. Chem., 2005, 44, 1205-1207. https://doi.org/10.1021/ic048347g

    Article  CAS  PubMed  Google Scholar 

  56. W. K. Dong, L. C. Zhu, J. C. Ma, Y. X. Sun, and Y. Zhang. Inorg. Chim. Acta, 2016, 453, 402-408. https://doi.org/10.1016/j.ica.2016.08.050

    Article  CAS  Google Scholar 

  57. Y. Zhang, L. Z. Liu, Y. D. Peng, N. Li, and W. K. Dong. Transit. Met. Chem., 2019, 44, 627-639. https://doi.org/10.1007/s11243-019-00325-3

    Article  CAS  Google Scholar 

  58. Y. Q. Pan, Y. Zhang, M. Yu, Y. Zhang, and L. Wang. Appl. Organomet. Chem., 2020, 34, e5441. https://doi.org/10.1002/aoc.5441

    Article  Google Scholar 

  59. M. G. B. Drew, A. H. Othman, S. G. McFall, P. D. A. Mcllroy, and S. M. Nelson. J. Chem. Soc., Dalton Trans., 1977, 438-446. https://doi.org/10.1039/DT9770000438

    Article  Google Scholar 

  60. N. B. Colthu. J. Opt. Soc. Am., 1950, 40(6), 397-400. https://doi.org/10.1364/JOSA.40.000397

    Article  CAS  Google Scholar 

  61. J. F. Brown. J. Am. Ceram. Soc., 1955, 77(23), 6341-6351. https://doi.org/10.1021/ja01628a078

    Article  CAS  Google Scholar 

  62. X. Y. Li, Q. P. Kang, C. Liu, Y. Zhang, and W. K. Dong. New J. Chem., 2019, 43, 4605. https://doi.org/10.1039/C9NJ00014C

    Article  CAS  Google Scholar 

  63. S. Musumeci, E. Rizzarelli, S. Sammartano, and A. Seminara. Z. Anorg. Allg. Chem., 1977, 433, 297-304. https://doi.org/10.1002/zaac.19774330137

    Article  CAS  Google Scholar 

  64. L. Z. Liu, M. Yu, X. Y. Li, Q. P. Kang, and W. K. Dong. Chin. J. Inorg. Chem., 2019, 35, 1283-1294.

  65. X. Xu, R. N. Bian, S. Z. Guo, W. K. Dong, and Y. J. Ding. Inorg. Chim. Acta, 2020, 513, 119945. https://doi.org/10.1016/j.ica.2020.119945

    Article  CAS  Google Scholar 

  66. J. F. Wang, R. Y. Li, P. Li, and W. K. Dong. Inorg. Chim. Acta, 2021, 518, 120247. https://doi.org/10.1016/j.ica.2021.120247

    Article  CAS  Google Scholar 

  67. M. A. Spackman and . CrystEngComm, 2009, 11, 19-32. https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

  68. P. Manna, S. K. Seth, A. Das, J. Hemming, R. Prendergast, M. Helliwell, S. R. Choudhury, A. Frontera, and S. Mukhopadhyay. Inorg. Chem., 2012, 51, 3557-3571. https://doi.org/10.1021/ic202317f

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21761018), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. -K. Dong.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 2, pp. 220-223.https://doi.org/10.26902/JSC_id88419

The original online version of this article was revised: Modification has been made to the Graphical Abstract. Full information regarding the corrections made can be found in the erratum for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Li, L.L., Li, P. et al. SUPRAMOLECULAR ASSEMBLIES IN AN UNPRECEDENTED ASYMMETRIC SALAMO-BASED DINUCLEAR NICKEL(II) COMPLEX BEARING TWO DIFFERENT COORDINATION MODES. J Struct Chem 63, 280–292 (2022). https://doi.org/10.1134/S0022476622020093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622020093

Keywords

Navigation