Skip to main content
Log in

SYNTHESIS AND STRUCTURES OF COORDINATION POLYMERS BASED ON A BRIDGING LIGAND WITH THE THIENOTHIOPHENE BACKBONE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Two novel metal-organic coordination polymers [Sr(ttdc)(dma)2] (1) and [Zn(ttdc)(bpy)]·DMA·4H2O (2) (H2ttdc = thieno[3,2-b]thiophene-2,5-dicarboxylic acid, bpy = 2,2′-bipyridyl, DMA = N,N-dimethylacetamide) are synthesized under solvothermal conditions. Structures of the compounds are established by the single crystal X-ray diffraction (XRD) analysis. The coordination polymers are characterized by powder XRD, elemental and thermogravimetric analyses, and IR spectroscopy. Compound 1 is a 2D coordination polymer while compound 2 is composed of zigzag chains linked by π–π stacking between bpy molecules into a porous supramolecular framework with a free volume of 42%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, and H.-C. Zhou. Adv. Mater., 2018, 30, 1704303. https://doi.org/10.1002/adma.201704303

    Article  CAS  Google Scholar 

  2. H.-C. Zhou and S. Kitagawa. Chem. Soc. Rev., 2014, 43, 5415-5418. https://doi.org/10.1039/c4cs90059f

    Article  CAS  PubMed  Google Scholar 

  3. Q. Wang and D. Astruc. Chem. Rev., 2020, 120, 1438-1511. https://doi.org/10.1021/acs.chemrev.9b00223

    Article  CAS  PubMed  Google Scholar 

  4. A. Kirchon, L. Feng, H. F. Drake, E. A. Josepha, and H.-C. Zhou. Chem. Soc. Rev., 2018, 47, 8611-8638. https://doi.org/10.1039/c8cs00688a

    Article  CAS  PubMed  Google Scholar 

  5. V. A. Bolotov, K. A. Kovalenko, D. G. Samsonenko, X. Han, X. Zhang, G. L. Smith, L. J. McCormick, S. J. Teat, S. Yang, M. J. Lennox, A. Henley, E. Besley, V. P. Fedin, D. N. Dybtsev, and M. Schröder. Inorg. Chem., 2018, 57, 5074-5082. https://doi.org/10.1021/acs.inorgchem.8b00138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. P. A. Demakov, S. S. Volynkin, D. G. Samsonenko, V. P. Fedin, and D. N. Dybtsev. Molecules, 2020, 25, 4396. https://doi.org/10.3390/molecules25194396

    Article  CAS  PubMed Central  Google Scholar 

  7. M. Yoon and D. Moon. Microporous Mesoporous Mater., 2015, 215, 116-122. http://dx.doi.org/10.1016/j.micromeso.2015.05.030

    Article  CAS  Google Scholar 

  8. J. Hu, Y. Liu, J. Liu, C. Gu, and D. Wu. Fuel, 2018, 226, 591-597. https://doi.org/10.1016/j.fuel.2018.04.067

    Article  CAS  Google Scholar 

  9. J. Zhao, X.-L. Wang, X. Shi, Q.-H. Yang, and C. Li. Inorg. Chem., 2011, 50, 3198-3205. http://dx.doi.org/10.1021/ic101112b

    Article  CAS  PubMed  Google Scholar 

  10. V. A. Dubskikh, A. A. Lysova, D. G. Samsonenko, A. N. Lavrov, K. A. Kovalenko, D. N. Dybtsev, and V. P. Fedin. Molecules, 2021, 26, 1269. https://doi.org/10.3390/molecules26051269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. R.-X. Yang, H.-M. Lan, P.-Y. Zhu, L.-Z. Yang, Y.-M. Yu, L.-L. Wang, and D.-Z. Wang. Inorg. Chim. Acta, 2020, 506, 119410. https://doi.org/10.1016/j.ica.2019.119410

    Article  CAS  Google Scholar 

  12. L. Li, J.-Y. Zou, S.-Y. You, K.-H. Chen, J.-Z. Cui, and W.-M. Wang. Polyhedron, 2018, 141, 262-266. https://doi.org/10.1016/j.poly.2017.11.049.

    Article  CAS  Google Scholar 

  13. S. Goswami, G. Leitus, and I. Goldberg. ChemistrySelect, 2017, 2, 2322-2329. http://dx.doi.org/10.1002/slct.201700136

    Article  CAS  Google Scholar 

  14. S. Zhang, N.-X. Sun, L. Li, Z.-B. Han, and Y.-Z. Zheng. RSC Adv., 2014, 4, 5740-5745. https://doi.org/10.1039/c3ra44559c

    Article  CAS  Google Scholar 

  15. V. A. Dubskikh, A. A. Lysova, D. G. Samsonenko, А. N. Lavrov, D. N. Dybtsev, and V. P. Fedin. Coord. Chem., 2021, 47, 598-603. https://doi.org/10.31857/S0132344X21100029

    Article  Google Scholar 

  16. X. Chen and A. M. Plonka. Cryst. Growth Des., 2013, 13, 326-332. https://doi.org/10.1021/cg301471r

    Article  CAS  Google Scholar 

  17. A. R. Balendra. J. Mol. Struc., 2017, 1131, 171-180. http://dx.doi.org/10.1016/j.molstruc.2016.11.029

    Article  CAS  Google Scholar 

  18. J. B. Baruah. Coord. Chem. Rev., 2021, 437, 213862. https://doi.org/10.1016/j.ccr.2021.213862

    Article  CAS  Google Scholar 

  19. C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward. Acta Crystallogr., Sect. B, 2016, 72, 171-179. https://doi.org/10.1107/S2052520616003954

    Article  CAS  Google Scholar 

  20. J. L. C. Rowsell and O. M. Yaghi. J. Am. Chem. Soc., 2006, 128, 1304-1315. https://doi.org/10.1021/ja056639q

    Article  CAS  PubMed  Google Scholar 

  21. K. Koh, A. G. Wong-Foy, and A. J. Matzger. J. Am. Chem. Soc., 2009, 131, 4184/4185. https://doi.org/10.1021/ja809985t

    Article  CAS  PubMed  Google Scholar 

  22. R. D. Svetogorov, P. V. Dorovatovskii, and V. A. Lazarenko. Cryst. Res. Technol., 2020, 55, 1900184. https://doi.org/10.1002/crat.201900184

    Article  CAS  Google Scholar 

  23. V. A. Lazarenko, P. V. Dorovatovskii, Y. V. Zubavichus, A. S. Burlov, Yu. V. Koshchienko, V. G. Vlasenko, and V. N. Khrustalev. Crystals, 2017, 7, 325. https://doi.org/10.3390/cryst7110325

    Article  CAS  Google Scholar 

  24. W. Kabsch. Acta Crystallogr., Sect. D, 2010, 66, 125-132. https://doi.org/10.1107/S0907444909047337

    Article  CAS  Google Scholar 

  25. G. M. Sheldrick. Acta Crystallogr., Sect. A, 2015, 71, 3-8. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  26. G. M. Sheldrick. Acta Crystallogr., Sect. C, 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  27. A. L. Speck. Acta Crystallogr., Sect. C, 2015, 71, 9-15. https://doi.org/10.1107/S2053229614024929

    Article  CAS  Google Scholar 

  28. Match! Phase Analysis using Powder Diffraction. https://www.crystalimpact.com/match/Default.htm

Download references

Funding

The work was supported by the Russian Science Foundation (grant No. 18-13-00203, https://rscf.ru/project/18-13-00203/) and the Ministry of Science and Higher Education of the Russian Federation (project No. 121031700321-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Fedin.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 2, pp. 163-170.https://doi.org/10.26902/JSC_id87114

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubskikh, V.A., Lysova, A.A., Samsonenko, D.G. et al. SYNTHESIS AND STRUCTURES OF COORDINATION POLYMERS BASED ON A BRIDGING LIGAND WITH THE THIENOTHIOPHENE BACKBONE. J Struct Chem 63, 227–234 (2022). https://doi.org/10.1134/S0022476622020032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622020032

Keywords

Navigation