Skip to main content
Log in

THEORETICAL STUDIES ON STRUCTURE-DIRECTING INTERACTIONS OF DIPHENYL N-(2-PYRAZINYL CARBONYL) PHOSPHORAMIDATE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Herein, we report the strength of structure-directing interactions in the crystal packing of diphenyl N-(2-pyrazinyl carbonyl) phosphoramidate (1) through computing their binding energies by DFT. Further, the non-covalent interaction (NCI) analysis, molecular Hirshfeld surfaces, and the corresponding two-dimensional fingerprint plots are obtained to gain a deep understanding of the importance of these interactions in the stability of a crystal structure. Despite the important role of the phosphorus–chalcogenid bond in optimizing tertiary phosphine chalcogenides, their computational studies have been lagging far behind. The nature and electronic structure of this bond in (N2C4H3)C(O)NHP(E)(OC6H5)2 (E = O (1), S (2), and Se (3)) are evaluated by QTAIM, MEP, and HOMO–LUMO energy gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. R. Davies. Chalcogen-Phosphorus (and Heavier Congeners) Chemistry. In: Handbook of Chalcogen Chemistry: New Perspectives in Sulfur, Selenium and Tellurium / Ed. F. A. Devillanova. Cambridge, UK: Royal Society of Chemistry, 2007. 286-343. https://doi.org/10.1039/9781847557575-00286

    Article  Google Scholar 

  2. A.-R. Popescu, A. Laromaine, F. Teixidor, R. Sillanp, R. Kivek, J. I. Llambias, and C. ViÇas. Chem. Eur. J., 2011, 17, 4429-4443. https://doi.org/10.1002/chem.201003330

    Article  CAS  PubMed  Google Scholar 

  3. J. B. Cook, B. K. Nicholson, and D. W. Smith. J. Organomet. Chem., 2004, 689, 860-869. https://doi.org/10.1016/j.jorganchem.2003.12.016

    Article  CAS  Google Scholar 

  4. W.-K. Koh, Y. Yoon, and C. B. Murray. Chem. Mater., 2011, 23, 1825-1829. https://doi.org/10.1021/cm1033172

    Article  CAS  Google Scholar 

  5. D. S. Glueck. Chem. Eur. J., 2008, 14, 7108-7117. https://doi.org/10.1002/chem.200800267

    Article  CAS  PubMed  Google Scholar 

  6. K. Gholivand, A. M. Alizadehgan, F. Mojahed, and P. Soleimani. Polyhedron, 2008, 27, 1639-1649. https://doi.org/10.1016/j.poly.2008.01.023

    Article  CAS  Google Scholar 

  7. K. Gholivand, K. Farshadfar, S. M. Roe, M. Hosseini, and A. Gholami. CrystEngComm, 2016, 18, 7104-7115. https://doi.org/10.1039/C6CE01339B

    Article  CAS  Google Scholar 

  8. H. Reza Khavasi, A. Gholami, M. Hosseini, L. Nikpoor, and K. Eskandari. Cryst. Growth Des., 2020, 20(4), 2266-2274. https://doi.org/10.1021/acs.cgd.9b01385

    Article  CAS  Google Scholar 

  9. S. R. Choudhury, P. Gamez, A. Robertazzi, C.-Y. Chen, H. M. Lee, and S. Mukhopadhyay. Cryst. Growth Des., 2008, 8, 3773-3784. https://doi.org/10.1021/cg800403p

    Article  CAS  Google Scholar 

  10. 1016/j.molstruc.2018.04.003

    Article  CAS  Google Scholar 

  11. M. Mitra, P. Manna, A. Bauza, P. Ballester, S. K. Seth, S. R. Choudhury, A. Frontera, and S. Mukhopadhyay. J. Phys. Chem. B, 2014, 118, 14713-14726. https://doi.org/10.1021/jp510075m

    Article  CAS  PubMed  Google Scholar 

  12. K. Gholivand, M. Hosseini, A. A. EbrahimiValmoozi, and K. Farshadfar. CrystEngComm., 2017, 19, 2536-2548. https://doi.org/10.1039/C7CE00039A

    Article  CAS  Google Scholar 

  13. H. R. Khavasi and S. Kavand. Dalton Trans., 2016, 45, 10761-10770. https://doi.org/10.1039/C6DT01563H

    Article  CAS  PubMed  Google Scholar 

  14. F. Orvay, A. Bauza, M. Barcelo-Oliver, A. Garcia-Raso, J. J. Fiol, A. Costa, E. Molins, I. Mata, and A. Frontera. CrystEngComm, 2014, 16, 9043-9053. https://doi.org/10.1039/C4CE01425A

    Article  CAS  Google Scholar 

  15. H. R. Khavasi and M. A. Fard. Cryst. Growth Des., 2010, 10, 1892-1896. https://doi.org/10.1021/cg100265d

    Article  CAS  Google Scholar 

  16. G. R. Desiraju. Angew. Chem., Int. Ed., 1995, 34, 2311-2327. https://doi.org/10.1002/anie.199523111

    Article  CAS  Google Scholar 

  17. M. Mirzaei, H. Eshghi, F. A. Bagherjeri, M. Mirzaei, and A. Farhadipour. J. Mol. Struct., 2018, 1163, 316-326. https://doi.org/10.1016/j.molstruc.2018.03.014

    Article  CAS  Google Scholar 

  18. K. Gholivand, M. Hosseini, A. A. E. Valmoozi, and K. Farshadfar. CrystEngComm, 2017, 19, 2536-2548. https://doi.org/10.1039/C7CE00039A

    Article  CAS  Google Scholar 

  19. K. Gholivand, M. Hosseini, Y. Maghsoud, J. Valenta, A. A. E. Valmuzi, A. Owczarzak, M. Kubicki, M. Jamshidi, and M. Kahnouji. Inorg. Chem., 2019, 58(9), 5630-5645. https://doi.org/10.1021/acs.inorgchem.8b03611

    Article  CAS  PubMed  Google Scholar 

  20. N. Dorosti, S. Nikpour, F. Molaei, and M. Kubicki. Chem. Pap., 2021, 75, 2503-2516. https://doi.org/10.1007/s11696-020-01461-2

    Article  CAS  Google Scholar 

  21. N. Sandblom, T. Ziegler, and T. Chivers. Can. J. Chem., 1996, 74, 2363-2371. https://doi.org/10.1139/v96-263

    Article  CAS  Google Scholar 

  22. J. B. Cook, B. K. Nicholson, and D. W. Smith. J. Organomet. Chem., 2004, 689, 860-869. https://doi.org/10.1016/j.jorganchem.2003.12.016

    Article  CAS  Google Scholar 

  23. K. Gholivand and N. Dorosti. Monatsh. Chem., 2013, 144, 1417-1425. https://doi.org/10.1007/s00706-013-0960-4

    Article  Google Scholar 

  24. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339-341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  25. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. J. Phys. Chem., 1994, 98, 11623-11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  26. T. Yanai, D. P. Tew, and N. C. Handy. Chem. Phys. Lett., 2004, 393, 51-57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  27. Y. Liu, J. Zhao, F. Li, and Z. Chen. J. Comput. Chem., 2013, 34, 121-131. https://doi.org/10.1002/jcc.23112

    Article  CAS  PubMed  Google Scholar 

  28. S. F. Boys and F. Bernardi. Mol Phys., 1970, 19, 553-566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  29. R. F. W. Bader. Chem. Rev., 1991, 91, 893-928. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Cari-cato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision D.01. Wallingford, CT: Gaussian, Inc., 2009.

  31. E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras Garcia, A. J. Cohen, and W. Yang. J. Am. Chem. Soc., 2010, 132, 6498-6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. T. Lu and F. Chen. J. Theor. Comput. Chem., 2012, 11, 163-183. https://doi.org/10.1142/S0219633612500113

    Article  CAS  Google Scholar 

  33. W. Humphrey, A. Dalke, and K. Schulten. J. Mol. Graphics, 1996, 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  34. S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, and M. A. Spackman. CrystalExplorer 3.0. Perth, Australia: University of Western Australia, 2012.

  35. M. A. Spackman and J. J. McKinnon. CrystEngComm, 2002, 4, 378-392. https://doi.org/10.1039/B203191B

    Article  CAS  Google Scholar 

  36. M. Nishio. CrystEngComm, 2004, 6, 130-158. https://doi.org/10.1039/b313104a

    Article  CAS  Google Scholar 

  37. M. Nishio. Phys. Chem. Chem. Phys., 2011, 13, 13873-13900. https://doi.org/10.1039/c1cp20404a

    Article  CAS  PubMed  Google Scholar 

  38. Y. Umezawa, S. Tsuboyama, H. Takahashi, J. Uzawa, and M. Nishio. Tetrahedron, 1999, 55, 10047-10056. https://doi.org/10.1016/S0040-4020(99)00539-6

    Article  CAS  Google Scholar 

  39. S. Mirdya, S. Roy, S. Chatterjee, A. Bauzá, A. Frontera, and S. Chattopadhyay. Cryst. Growth Des., 2019, 19, 5869-5881. https://doi.org/10.1021/acs.cgd.9b00881

    Article  CAS  Google Scholar 

  40. K. S. Kim, P. Tarakeshwar, and J. Y. Lee. Chem. Rev., 2000, 100, 4145-4185. https://doi.org/10.1021/cr990051i

    Article  CAS  PubMed  Google Scholar 

  41. D. L. Lande, S. A. Bhadane, and S. P. Gejji. J. Phys. Chem., 2017, 121, 1814-1824. https://doi.org/10.1021/acs.jpca.6b12912

    Article  CAS  PubMed  Google Scholar 

  42. M. A. Spackman and P. G. Byrom. Chem. Phys. Lett., 1997, 267, 215-220. https://doi.org/10.1016/S0009-2614(97)00100-0

    Article  CAS  Google Scholar 

  43. K. Gholivand, M. Azadbakht, Y. Maghsoud, M. Hosseini, and C. Kazak. J. Organomet. Chem., 2019, 879, 27-39. https://doi.org/10.1016/j.jorganchem.2018.10.012

    Article  CAS  Google Scholar 

  44. L. Taghizadeh, M. Montazerozohori, A. Masoudiasl, S. Joohari, and J. M. White. Mater. Sci. Eng. C, 2017, 77, 229-244. https://doi.org/10.1016/j.msec.2017.03.150

    Article  CAS  Google Scholar 

  45. C. Bejaoui, I. Ameur, N. Derbel, A. Linden, and S. Abid. J. Mol. Struct., 2018, 1166, 7-14. https://doi.org/

    Article  CAS  Google Scholar 

  46. G. Binzet, I. Gumus, A. Dogen, U. Florke, N. Kulcu, and H. Arslan. J. Mol. Struct., 2018, 1161, 519-529. https://doi.org/10.1016/j.molstruc.2018.02.073

    Article  CAS  Google Scholar 

  47. P. Politzer and J. S. Murray. Theor. Chem. Acc., 2002, 108, 134-142. https://doi.org/10.1007/s00214-002-0363-9

    Article  CAS  Google Scholar 

  48. K. Gholivand, H. R. Mahzouni, M. Pourayoubi, and S. Amiri. Inorg. Chim. Acta, 2010, 363, 2318-2324. https://doi.org/10.1016/j.ica.2010.03.064

    Article  CAS  Google Scholar 

  49. K. Gholivand, N. Oroujzadeh, and F. Afshar. J. Organomet. Chem., 2010, 695, 1383-1391. https://doi.org/10.1016/j.jorganchem.2010.02.004

    Article  CAS  Google Scholar 

  50. E. T. Farkhani, M. Pourayoubi, M. Izadyar, P. V. Andreev, and E. S. Shchegravina. Dalton Trans., 2019, 48, 17908-17918. https://doi.org/10.1039/C9DT03546J

    Article  CAS  PubMed  Google Scholar 

  51. M. Taherzadeh, M. Pourayoubi, and M. Nečas, Phosphorus, Sulfur Silicon Relat. Elem., 2019, 194, 39-46. https://doi.org/10.1080/10426507.2018.1487427

    Article  CAS  Google Scholar 

  52. R. F. W. Bader. Atoms in Molecules - A Quantum Theory. New York: Oxford University Press, 1990.

  53. M. H. Jamroz. Vibrational Energy Distribution Analysis, VEDA 4 computer program. Poland, 2004.

  54. Z. Zhou and H. V. Navangul. J. Phys. Org. Chem., 1990, 3, 784-788. https://doi.org/10.1002/poc.610031203

    Article  CAS  Google Scholar 

  55. P. Senet. Chem. Phys. Lett., 1997, 275, 527. https://doi.org/10.1016/S0009-2614(97)00799-9

    Article  CAS  Google Scholar 

  56. O. Sarioz, S. Oznergiz, and F. Kandemirli. Synth. React. Inorg. Met.-Org. Chem., 2013, 43, 185-195. https://doi.org/10.1080/15533174.2012.740709

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Dorosti.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 1, pp. 83-86.https://doi.org/10.26902/JSC_id87094

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaab omeyr, A., Dorosti, N. THEORETICAL STUDIES ON STRUCTURE-DIRECTING INTERACTIONS OF DIPHENYL N-(2-PYRAZINYL CARBONYL) PHOSPHORAMIDATE. J Struct Chem 63, 140–151 (2022). https://doi.org/10.1134/S0022476622010140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622010140

Keywords

Navigation