Skip to main content
Log in

SYNTHESIS, CRYSTAL STRUCTURE, AND DFT STUDIES OF A NEW PHENOXO-BRIDGED DINUCLEAR ZINC(II) SCHIFF BASE COMPLEX WITH TWO DIFFERENT GEOMETRIES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A new dinuclear Zn(II) complex Zn2L(H2O)(NCS)2 (1) is synthesized by the reaction of the tetradentate Schiff base ligand N,N′-bis(5-bromosalicylidene)-1,3-diaminopropane (H2L) with Zn(OAc)2·2H2O in the presence of sodium thiocyanate. The ligand and complex 1 are characterized by microanalytical and spectroscopic techniques. The structure of the complex is established by single crystal X-ray diffraction studies. In the phenoxo-bridged zinc complex, one Zn atom is five-coordinated in a square-pyramidal geometry while another is four-coordinated in a tetrahedral geometry. To gain insight into the structural features of complex 1, DFT studies are performed. The calculations reveal a strong effect of the intermolecular interaction, namely the π–π stacking interaction, on the geometry of the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. G. Parkin. Chem. Rev., 2004, 104, 699-768. https://doi.org/10.1021/cr0206263

    Article  CAS  PubMed  Google Scholar 

  2. H. Sakiyama, R. Mochizuki, A. Sugawara, M. Sakamoto, Y. Nishida, and M. Yamasaki. Dalton Trans., 1999, 997-1000. https://doi.org/10.1039/a808055k

    Article  Google Scholar 

  3. A. Tamilselvi, M. Nethaji, and G. Mugesh. Chem. Eur. J., 2006, 12, 7797-7806. https://doi.org/10.1002/chem.200600629

    Article  CAS  PubMed  Google Scholar 

  4. S. J. Lippard and J. M. Berg. Principles of Bioinorganic Chemistry. Mill Valley: University Science Books, 1994.

  5. Y. Xu, J. Meng, L. Meng, Y. Cheng, and C. Zhu. Chem. Eur. J., 2010, 16, 12898-12903. https://doi.org/10.1002/chem.201001198

    Article  CAS  PubMed  Google Scholar 

  6. Y. Gultneh, B. Ahvazi, D. Blaise, R. J. Butcher, and J. Jasinski. Inorg. Chim. Acta, 1996, 241, 31-38. https://doi.org/10.1016/0020-1693(95)04791-3

    Article  CAS  Google Scholar 

  7. D. Majumdar, J. K. Biswas, M. Mondal, M. S. Surendra Babu, R. K. Metre, S. Das, K. Bankura, and D. Mishra. J. Mol. Struct., 2018, 1155, 745-757. https://doi.org/10.1016/j.molstruc.2017.11.052

    Article  CAS  Google Scholar 

  8. D. J. Majumdar, S. Dey, S. S. Sreekumar, S. Das, D. Das, R. K. Metre, K. Bankura, and D. Mishra. ChemistrySelect, 2018, 3, 12371-12382. https://doi.org/10.1002/slct.201802996

    Article  CAS  Google Scholar 

  9. M. Maiti, S. Thakurta, D. Sadhukhan, G. Pilet, G. M. Rosair, A. Nonat, L. J. Charbonnière, and S. Mitra. Polyhedron, 2013, 65, 6-15. https://doi.org/10.1016/j.poly.2013.08.009

    Article  CAS  Google Scholar 

  10. M. Maiti, D. Sadhukhan, S. Thakurta, S. Roy, G. Pilet, R. J. Butcher, A. Nonat, L. J. Charbonnière, and S. Mitra. Inorg. Chem., 2012, 51, 12176-12187. https://doi.org/10.1021/ic3012958

    Article  CAS  PubMed  Google Scholar 

  11. O. Atakol, H. Nazir, M. Aksu, C. Arici, F. Ercan, and B. Çiçek. Synth. React. Inorg. Met. Org. Chem., 2000, 30, 709-718. https://doi.org/10.1080/00945710009351793

    Article  CAS  Google Scholar 

  12. O. Atakol, L. Tatar, M. A. Akay, and D. Ülkü. Anal. Sci., 1999, 15, 199/200. https://doi.org/10.2116/analsci.15.199

    Article  CAS  Google Scholar 

  13. C. Arici and M. Aksu. Anal. Sci., 2002, 18, 727/728. https://doi.org/10.2116/analsci.18.727

    Article  CAS  PubMed  Google Scholar 

  14. M. Azam and S. I. Al-Resayes. J. Mol. Struct., 2016, 1107, 77-81. https://doi.org/10.1016/j.molstruc.2015.11.017

    Article  CAS  Google Scholar 

  15. Y.-N. Chen, Y.-Y. Ge, W. Zhou, L.-F. Ye, Z.-G. Gu, G.-Z. Ma, W.-S. Li, H. Li, and Y.-P. Cai. Inorg. Chem. Commun., 2011, 14, 1228-1232. https://doi.org/10.1016/j.inoche.2011.04.028

    Article  CAS  Google Scholar 

  16. A. Bhattacharyya, S. Roy, J. Chakraborty, and S. Chattopadhyay. Polyhedron, 2016, 112, 109-117. https://doi.org/10.1016/j.poly.2016.03.026

    Article  CAS  Google Scholar 

  17. Y. Elerman, A. Elmali, M. Kabak, and I. Svoboda. Acta Crystallogr., Sect. C, 1998, 54, 1701-1703. https://doi.org/10.1107/S0108270198005046

    Article  Google Scholar 

  18. Apex 2, version 2.2. Madison: Bruker AXS Inc., 2006.

  19. Bruker. SADABS Program for Area Detector Absorption Correction. Madison, Wisconsin: Bruker AXS Inc., 2004.

  20. G. M. Sheldrick. Acta Crystallogr., Sect. A, 2008, 64, 112-122. https://doi.org/10.1107/S0108767307043930

    Article  Google Scholar 

  21. G. M. Sheldrick. Acta Crystallogr., Sect. C, 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  22. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339-341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  23. A. D. Becke. J. Chem. Phys., 1993, 98, 5648-5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  24. A. D. Becke. Phys. Rev. A, 1988, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  25. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  26. R. Ditchfield, W. J. Hehre, and J. A. Pople. J. Chem. Phys., 1971, 54, 724-728. https://doi.org/10.1063/1.1674902

    Article  CAS  Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. lyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Rev D.01. Wallingford, CT: Gaussian, 2013.

  28. S. Grimme, S. Ehrlich, and L. Goerigk. J. Comput. Chem., 2011, 32, 1456-1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  29. G. A. Zhurko and D. A. Zhurko. Chemcraft, ver. 1.6 (build 338). http://www.chemcraftprog.com/index.html

  30. S. Thakurta, M. Maiti, G. M. Rosair, and A. Kuznetsov. J. Mol. Struct., 2021, 1230, 129863. https://doi.org/10.1016/j.molstruc.2020.129863

    Article  CAS  Google Scholar 

  31. K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York: Wiley, 1986.

  32. S. Thakurta, R. J. Butcher, A. Frontera, and S. Mitra. J. Coord. Chem. 2017, 70, 3715-3726. https://doi.org/10.1080/00958972.2017.1394460

    Article  CAS  Google Scholar 

  33. A. Bhattacharyya, S. Sen, K. Harms, and S. Chattopadhyay. Polyhedron, 2015, 88, 156-163. https://doi.org/10.1016/j.poly.2014.12.018

    Article  CAS  Google Scholar 

  34. A. W. Addison, T. N. Rao, J. Reedijk, J. Van Rijn, and G. C. Verschoor. J. Chem. Soc., Dalton Trans., 1984, 1349-1356. https://doi.org/10.1039/DT9840001349

    Article  Google Scholar 

  35. A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson, and R. Taylor. J. Chem. Soc., Dalton Trans., 1989, S1-S83. https://doi.org/10.1039/dt98900000s1

    Article  Google Scholar 

  36. S. Avarez. Dalton Trans., 2013, 42, 8617-8636. https://doi.org/10.1039/c3dt50599e

    Article  CAS  PubMed  Google Scholar 

  37. K. Helttunen, L. Lehtovaara, H. Häkkinen, and M. Nissinen. Cryst. Growth Des., 2013, 13, 3603-3612. https://doi.org/10.1021/cg4005714

    Article  CAS  Google Scholar 

  38. M. Madni, M. N. Ahmed, M. Hafeez, M. Ashfaq, M. N. Tahir, D. M. Gil, B. Galmés, S. Hameed, and A. Frontera. New J. Chem., 2020, 44, 14592-14603. https://doi.org/10.1039/D0NJ02931A

    Article  CAS  Google Scholar 

  39. M. Kołaski, A. Kumar, N. J. Singh, and K. S. Kim. Phys. Chem. Chem. Phys., 2011, 13, 991-1001. https://doi.org/10.1039/C003008B

    Article  CAS  PubMed  Google Scholar 

  40. A. G. Starikov, D. G. Ivanov, A. A. Starikova, and V. I. Minkin. Chem. Pap., 2018, 72, 829-839. https://doi.org/10.1007/s11696-017-0225-5

    Article  CAS  Google Scholar 

  41. A. G. Starikov, A. A. Starikova, and V. I. Minkin. Russ. J. Coord. Chem., 2021, 47, 174-179. https://doi.org/10.1134/S1070328421030064

    Article  CAS  Google Scholar 

Download references

Funding

S. Thakurta gratefully acknowledges Jadavpur University, Kolkata, India for infrastructural support. The quantum chemical calculations were carried out using the resources of the center of the collective use of SFEDU “The High Performance Computing” (Russia).

This research was financially supported in part (theoretical studies) by the Ministry of Science and Higher Education of the Russian Federation No. 0852-2020-0019 (State assignment in the field of scientific activity, Southern Federal University, 2020 project No BAZ0110/20-1-03EH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thakurta.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 1, pp. 8-10.https://doi.org/10.26902/JSC_id85857

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakurta, S., Maiti, M., Rosair, G.M. et al. SYNTHESIS, CRYSTAL STRUCTURE, AND DFT STUDIES OF A NEW PHENOXO-BRIDGED DINUCLEAR ZINC(II) SCHIFF BASE COMPLEX WITH TWO DIFFERENT GEOMETRIES. J Struct Chem 63, 9–18 (2022). https://doi.org/10.1134/S0022476622010024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622010024

Keywords

Navigation