Skip to main content
Log in

SYNTHESIS AND STRUCTURE OF TRIARYLBISMUTH bis(2,3-DIFLUOROBENZOATES)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Triarylbismuth dicarboxylates p-Tol3Bi[OC(O)C6H3F2-2,3]2 (1) and m-Tol3Bi[OC(O)C6H3F2-2,3]2 (2) are synthesized by the oxidative addition reaction between triarylbismuth and 2,3-difluorobenzoic acid in the presence of tert-butyl peroxide. According to single crystal X-ray diffraction data, bismuth atoms have the coordination of a distorted trigonal bipyramid with oxygen atoms of carboxylate ligands in axial positions. Axial OBiO angles are 171.09(12)° (1) and 173.50(9)° (2). Lengths of Bi–C bonds have close values: 2.198(5)-2.213(4) Å in 1 and 2.165(3)-2.195(5) Å in 2. The Bi–O lengths (2.261(3) Å, 2.306(3) Å in 1 and 2.284(3) Å, 2.243(3) Å in 2) are comparable with the lengths of Bi–O covalent bonds. The bismuth atom is out of the [С3] equatorial plane by 0.007 Å and 0.012 Å in 1 and 2 respectively. The Bi⋯O=C distances are 2.878(5) Å, 2.953(4) Å (1) and 2.891(3) Å, 3.056(4) Å (2), which is much smaller than the sum of Van der Waals radii of Bi and O atoms of 3.9 Å. The formation of the spatial structure of the crystals of compounds 1 and 2 is governed by the occurrence of С=О⋯H, С(Ar)–Н⋯F hydrogen bonds, СН⋯π interactions, and the stacking effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. A. N. Usoltsev, S. A. Adonin, A. S. Novikov, M. N. Sokolov, and V. P. Fedin. Russ. J. Coord. Chem., 2020, 46, 23. https://doi.org/10.1134/S107032842001008X

    Article  CAS  Google Scholar 

  2. D. R. Kindra, J. K. Peterson, J. W. Ziller, and W. J. Evans. Organometallics, 2015, 34, 395. https://doi.org/10.1021/om5010786

    Article  CAS  Google Scholar 

  3. I. J. Casely, J. W. Ziller, B. J. Mincher, and W. J. Evans. Inorg. Chem., 2011, 50, 1513. https://doi.org/10.1021/ic102119y

    Article  CAS  PubMed  Google Scholar 

  4. I. Urbanova, R. Jambor, A. Ruzicka, R. Jirasko, and L. Dostal. Dalton Trans., 2014, 43, 505. https://doi.org/10.1039/C3DT51733K

    Article  CAS  PubMed  Google Scholar 

  5. S. Solyntjes, B. Neumann, H.-G. Stammler, N. Ignatev, and B. Hoge. Eur. J. Inorg. Chem., 2016, 25, 3999. https://doi.org/10.1002/ejic.201600539

    Article  CAS  Google Scholar 

  6. A. Soran, H. J. Breunig, V. Lippolis, M. Arca, and C. Silvestru. J. Organomet. Chem., 2010, 695, 850. https://doi.org/10.1016/j.jorganchem.2010.01.004

    Article  CAS  Google Scholar 

  7. A. Schulz and A. Villinger. Organometallics, 2011, 30, 284. https://doi.org/10.1021/om1009796

    Article  CAS  Google Scholar 

  8. H. J. Breunig, M. G. Nema, C. Silvestru, A. Soran, and R. A. Varga. Z. Anorg. Allg. Chem., 2010, 636, 2378. https://doi.org/10.1002/zaac.201000233

    Article  CAS  Google Scholar 

  9. E. Alcantara, P. Sharma, D. Perez, A. Cabrera, J. Vasquez, R. Gutierrez, S. Hernandez, and A. Toscano. Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2012, 42, 1139. https://doi.org/10.1080/15533174.2012.680162

    Article  CAS  Google Scholar 

  10. S. L. Benjamin, L. Karagiannidis, W. Levason, G. Reid, and M. C. Rogers. Organometallics, 2011, 30, 895. https://doi.org/10.1021/om1010148

    Article  CAS  Google Scholar 

  11. C. Lichtenberg, F. Pan, T. P. Spaniol, U. Englert, and J. Okuda. Angew. Chem., Int. Ed., 2012, 51, 13011. https://doi.org/10.1002/anie.201206782

    Article  CAS  Google Scholar 

  12. T. Obata, M. Matsumura, M. Kawahata, S. Hoshino, M. Yamada, Y. Murata, N. Kakusawa, K. Yamaguchi, M. Tanaka, and S. Yasuike. J. Organomet. Chem., 2016, 807, 17. https://doi.org/10.1016/j.jorganchem.2016.02.008

    Article  CAS  Google Scholar 

  13. V. V. Sharutin, O. K. Sharutina, V. A. Ermakova, and Ya. R. Smagina. Russ. J. Inorg. Chem., 2017, 62, 1043. https://doi.org/10.1134/S0036023617100163

    Article  CAS  Google Scholar 

  14. B. A. Chalmers, C. B. E. Meigh, P. S. Nejman, M. Buhl, T. Lebl, J. D. Woollins, A. M. Z. Slawin, and P. Kilian. Inorg. Chem., 2016, 55, 7117. https://doi.org/10.1021/acs.inorgchem.6b01079

    Article  CAS  PubMed  Google Scholar 

  15. C. Tschersich, S. Hoof, N. Frank, C. Herwig, and C. Limberg. Inorg. Chem., 2016, 55, 1837. https://doi.org/10.1021/acs.inorgchem.5b02740

    Article  CAS  PubMed  Google Scholar 

  16. C. R. Wade, M. R. Saber, and F. P. Gabbai. Heteroat. Chem., 2011, 22, 500. https://doi.org/10.1002/hc.20713

    Article  CAS  Google Scholar 

  17. E. V. Novikova, A. V. Ivanov, I. V. Egorova, R. S. Troshina, N. A. Rodionova, A. I. Smolentsev, and O. N. Antzutkin. Russ. J. Coord. Chem., 2019, 45, 695. https://doi.org/10.1134/S1070328419100038

    Article  CAS  Google Scholar 

  18. J. Chen, T. Murafuji, and R. Tsunashima. Organometallics, 2011, 30, 4532. https://doi.org/10.1021/om200228x

    Article  CAS  Google Scholar 

  19. R. N. Duffin, V. L. Blair, L. Kedzierski, and P. C. Andrews. Dalton Trans., 2018, 47, 971. https://doi.org/10.1039/C7DT04171C

    Article  CAS  PubMed  Google Scholar 

  20. R. N. Duffin, V. L. Blair, L. Kedzierski, and P. C. Andrews. J. Inorg. Biochem., 2018, 189, 151. https://doi.org/10.1016/j.jinorgbio.2018.08.015

    Article  CAS  PubMed  Google Scholar 

  21. Y. C. Ong, V. L. Blair, L. Kedzierski, and P. C. Andrews. Dalton Trans., 2014, 43, 12904. https://doi.org/10.1039/C4DT00957F

    Article  CAS  PubMed  Google Scholar 

  22. Y. C. Ong, V. L. Blair, L. Kedzierski, K. L. Tuck, and P. C. Andrews. Dalton Trans., 2015, 44, 18215. https://doi.org/10.1039/C5DT03335G

    Article  CAS  PubMed  Google Scholar 

  23. X.-Y. Zhang, R.-X. Wu, C.-F. Bi, X. Zhang, and Y.-H. Fan. Inorg. Chim. Acta., 2018, 483, 129. https://doi.org/10.1016/j.ica.2018.07.027

    Article  CAS  Google Scholar 

  24. K. A. Kocheshkov, A. P. Skoldinov, and N. N. Zemlyansky. Metody elementoorganicheskoi khimii. Surma, vismut (Methods of the Organometallic Chemistry. Antimony, Bismuth). Moscow: Nauka, 1976. [In Russian]

  25. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Madison, Wisconsin, USA: Bruker AXS Inc., 1998.

  26. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Madison, Wisconsin, USA: Bruker AXS Inc., 1998.

  27. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  28. A. V. Vasilev, E. V. Grinenko, A. O. Schukin, and T. G. Fedulina. Infrakrasnaya spektroskopiya organicheskikh i prirodnykh soedinenii (Infrared Spectroscopy of Organic and Natural Compounds). St. Petersburg, Russia: SPbFTU, 2007. [In Russian]

  29. B. N. Tarasevich. IK spektry osnovnykh klassov organicheskikh soedinenii (IR Spectra of the Main Classes of Organic Compounds). Moscow: MGU, 2012. ]In Russian]

  30. S. S. Batsanov. Russ. J. Inorg. Chem., 1991, 36, 1694.

  31. A. Hassan and S. Wang. Dalton Trans., 1997, 12, 2009. https://doi.org/10.1039/a700477j

    Article  Google Scholar 

  32. V. V. Sharutin, O. K. Sharutina, and A. N. Efremov. Russ. J. Inorg. Chem., 2019, 64, 190. https://doi.org/10.1134/S0036023619100139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Efremov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 12, pp. 2084-2090.https://doi.org/10.26902/JSC_id84811

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremov, A.N., Sharutin, V.V. & Sharutina, O.K. SYNTHESIS AND STRUCTURE OF TRIARYLBISMUTH bis(2,3-DIFLUOROBENZOATES). J Struct Chem 62, 1962–1968 (2021). https://doi.org/10.1134/S0022476621120155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621120155

Keywords

Navigation