Skip to main content
Log in

CRYSTAL CHEMISTRY OF NOVEL “ANTIZEOLITE” STRUCTURES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The “antizeolite” concept, which was originally proposed for mayenite-type structures, can also be successfully applied to a number of compounds containing large cations and characterized by a conservative cationic “framework” with cavities, some of which can contain disordered and very diverse anionic clusters, similarly to the zeolite anionic frameworks whose large cavities contain variable cationic ensembles. This approach and its use to control the functional properties of corresponding materials are considered on the example of recently described novel “antizeolite” structural types such as barium orthoborate Ba3(BO3)2 and burbankite Na2Ca4(CO3)5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. E. V. Galuskin, F. Gfeller, I. O. Galuskina, T. Armbruster, R. Bailau, and V. V. Sharygin. Eur. J. Mineral., 2015, 27, 99-111. https://doi.org/10.1127/ejm/2015/0027-2418

    Article  CAS  Google Scholar 

  2. A. Schmidt, H. Boysen, A. Senyshyn, and M. Lerch. Z. Für Krist. – Cryst. Mater., 2014, 229, 427. https://doi.org/10.1515/zkri-2013-1720

    Article  CAS  Google Scholar 

  3. T. Sakakura, K. Tanaka, Y. Takenaka, S. Matsuishi, H. Hosono, and S. Kishimoto. Acta Crystallogr. B, 2011, 67, 193-204. https://doi.org/10.1107/S0108768111005179

    Article  CAS  Google Scholar 

  4. N. V. Chukanov, M. F. Vigasina, N. V. Zubkova, I. V. Pekov, C. Schäfer, A. V. Kasatkin, V. O. Yapaskurt, and D. Y. Pushcharovsky. Minerals, 2020, 10, 363. https://doi.org/10.3390/min10040363

    Article  CAS  Google Scholar 

  5. Y. V. Seryotkin and V. V. Bakakin. Phys. Chem. Miner., 2014, 41, 173-180. https://doi.org/10.1007/s00269-013-0635-z

    Article  CAS  Google Scholar 

  6. Y. Seryotkin and V. Bakakin. Z. Für Krist. – Cryst. Mater., 2015, 230, 233–242. https://doi.org/10.1515/zkri-2014-1807

    Article  CAS  Google Scholar 

  7. S. V. Rashchenko, Y. V. Seryotkin, and V. V. Bakakin. Microporous and Mesoporous Mater., 2012, 151, 93-98. https://doi.org/10.1016/j.micromeso.2011.11.009.

  8. A. Vegas. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1985, 41, 1689/1690. https://doi.org/10.1107/S0108270185009052

    Article  Google Scholar 

  9. E. M. Levin and H. F. McMurdie. J. Am. Ceram. Soc., 1949, 32, 99-105.

  10. E. H. P. Cordfunke, R. J. M. Konings, R. R. Vanderlaan, and W. Ouweltjes. J. Chem. Thermodyn., 1993, 25, 343-347. https://doi.org/10.1006/jcht.1993.1034

    Article  CAS  Google Scholar 

  11. T. B. Bekker, S. V. Rashchenko, Y. V. Seryotkin, A. E. Kokh, A. V. Davydov, and P. P. Fedorov. J. Am. Ceram. Soc., 2018, 101, 450-457. https://doi.org/10.1111/jace.15194

    Article  CAS  Google Scholar 

  12. J. Zhao and R. K. Li. Inorg Chem, 2014, 53, 2501-2505. https://doi.org/10.1021/ic4025525

    Article  CAS  PubMed  Google Scholar 

  13. T. B. Bekker, S. V. Rashchenko, V. P. Solntsev, A. P. Yelisseyev, A. A. Kragzhda, V. V. Bakakin, Y. V. Seryotkin, A. E. Kokh, K. A. Kokh, and A. B. Kuznetsov. Inorg. Chem., 2017, 56, 5411-5419. https://doi.org/10.1021/acs.inorgchem.7b00520

    Article  CAS  PubMed  Google Scholar 

  14. S. V. Rashchenko, T. B. Bekker, V. V. Bakakin, Y. V. Seryotkin, E. A. Simonova, and S. V. Goryainov. J. Alloys Compd., 2017, 694, 1196-1200. https://doi.org/10.1016/j.jallcom.2016.10.119

    Article  CAS  Google Scholar 

  15. T. B. Bekker, V. P. Solntsev, S. V. Rashchenko, A. P. Yelisseyev, A. V. Davydov, A. A. Kragzhda, A. E. Kokh, A. B. Kuznetsov, and S. Park. Inorg. Chem., 2018, 57, 2744-2751. https://doi.org/10.1021/acs.inorgchem.7b03134

    Article  CAS  PubMed  Google Scholar 

  16. V. P. Solntsev, T. B. Bekker, A. V. Davydov, A. P. Yelisseyev, S. V. Rashchenko, A. E. Kokh, V. D. Grigorieva, and S.-H. Park. J. Phys. Chem. C, 2019, 123, 4469-4474. https://doi.org/10.1021/acs.jpcc.9b00355

    Article  CAS  Google Scholar 

  17. S. Volkov, R. Bubnova, A. Povolotskiy, V. Ugolkov, and M. Arsent′ev. J. Solid State Chem., 2020, 281, 121023. https://doi.org/10.1016/j.jssc.2019.121023

    Article  CAS  Google Scholar 

  18. A. F. Wells. Structural Inorganic Chemistry. Oxford, UK: Clarendon, 1975.

  19. S. V. Rashchenko, V. V. Bakakin, A. F. Shatskiy, P. N. Gavryushkin, Y. V. Seryotkin, and K. D. Litasov. Cryst. Growth Des., 2017, 17, 6079-6084. https://doi.org/10.1021/acs.cgd.7b01161

    Article  CAS  Google Scholar 

  20. M. Luo, G. Wang, C. Lin, N. Ye, Y. Zhou, and W. Cheng. Inorg. Chem., 2014, 53, 8098-8104. https://doi.org/10.1021/ic501089f

    Article  CAS  PubMed  Google Scholar 

  21. G. Zou, N. Ye, L. Huang, and X. Lin. J. Am. Chem. Soc., 2011, 133, 20001-20007. https://doi.org/10.1021/ja209276a

    Article  CAS  PubMed  Google Scholar 

  22. T. Zhou and N. Ye. Acta Crystallogr., Sect. E: Struct. Rep. Online, 2008, 64, i37. https://doi.org/10.1107/S1600536808014785

    Article  CAS  Google Scholar 

  23. X. Wang, M. Xia, and R. K. Li. New J. Chem., 2016, 40, 2057-2062. https://doi.org/10.1039/C5NJ02710A

    Article  CAS  Google Scholar 

  24. T. B. Bekker, S. V. Rashchenko, V. V. Bakakin, Yu. V. Seryotkin, P. P. Fedorov, A. E. Kokh, and S. Yu. Stonoga. CrystEngComm, 2012, 14, 6910-6915. https://doi.org/10.1039/c2ce26122g

    Article  CAS  Google Scholar 

  25. S. V. Rashchenko, T. B. Bekker, V. V. Bakakin, Y. V. Seryotkin, V. S. Shevchenko, A. E. Kokh, and S. Y. Stonoga. Cryst. Growth Des., 2012, 12, 2955-2960. https://doi.org/10.1021/cg3004933

    Article  CAS  Google Scholar 

  26. X. Lin, F. Zhang, S. Pan, H. Yu, F. Zhang, X. Dong, S. Han, L. Dong, C. Bai, and Z. Wang. J. Mater. Chem. C, 2014, 2, 4257-4264. https://doi.org/10.1039/c4tc00079j

    Article  CAS  Google Scholar 

  27. S. Schmid, J. Senker, and W. Schnick. J. Solid State Chem., 2003, 174, 221-228. https://doi.org/10.1016/s0022-4596(03)00231-7

    Article  CAS  Google Scholar 

  28. T. B. Bekker, V. P. Solntsev, A. P. Yelisseyev, and S. V. Rashchenko. Cryst. Growth Des., 2016, 16, 4493-4499. https://doi.org/10.1021/acs.cgd.6b00615

    Article  CAS  Google Scholar 

  29. T. B. Bekker, T. M. Inerbaev, A. P. Yelisseyev, V. P. Solntsev, S. V. Rashchenko, A. V. Davydov, A. F. Shatskiy, and K. D. Litasov. Inorg. Chem., 2020, 59, 13598-13606. https://doi.org/10.1021/acs.inorgchem.0c01966

    Article  CAS  PubMed  Google Scholar 

  30. T. Bekker, V. Solntsev, A. Yelisseyev, A. Davydov, and S. Rashchenko. Cryst. Growth Des., 2020, 20, 4100-4107. https://doi.org/10.1021/acs.cgd.0c00368

    Article  CAS  Google Scholar 

  31. T. B. Bekker, V. P. Solntsev, A. P. Eliseev, S. V. Rashchenko, A. V. Davydov, A. A. Kragzhda, and A. B. Kuznetsov. Patent RU 2689596, 2019.

  32. C. Pedrini and B. Jacquier. J. Phys. C Solid State Phys., 1980, 13, 4791-4796. https://doi.org/10.1088/0022-3719/13/25/020

    Article  CAS  Google Scholar 

  33. J. Simonetti and D. S. McClure. Phys. Rev. B, 1977, 16, 3887-3892. https://doi.org/10.1103/PhysRevB.16.3887

    Article  CAS  Google Scholar 

  34. A. I. Nepomnyashchikh, A. A. Shalaev, A. K. Subanakov, A. S. Paklin, N. S. Bobina, A. S. Myasnikova, and R. Yu. Shendrik. Opt. Spectrosc., 2011, 111, 411. https://doi.org/10.1134/S0030400X11090189

    Article  CAS  Google Scholar 

  35. G. Corradi, V. Nagirnyi, A. Kotlov, A. Watterich, M. Kirm, K. Polgár, A. Hofstaetter, and M. Meyer. J. Phys. Condens. Matter, 2007, 20, 025216. https://doi.org/10.1088/0953-8984/20/02/025216

    Article  CAS  Google Scholar 

  36. G. Corradi, V. Nagirnyi, A. Watterich, A. Kotlov, and K. Polgár. J. Phys. Conf. Ser., 2010, 249, 012008. https://doi.org/10.1088/1742-6596/249/1/012008

    Article  CAS  Google Scholar 

  37. S. V. Rashchenko, T. B. Bekker, V. V. Bakakin, Y. V. Seryotkin, A. E. Kokh, P. Gille, A. I. Popov, and P. P. Fedorov. J. Appl. Crystallogr., 2013, 46, 1081-1084. https://doi.org/10.1107/S0021889813015756

    Article  CAS  Google Scholar 

  38. M. Batentschuk, P. Hackenschmied, A. Winnacker, M. Moll, and R. Fasbender. MRS Online Proc. Libr., 1999, 560, 27-32. https://doi.org/10.1557/PROC-560-27

    Article  CAS  Google Scholar 

  39. P. Hackenschmied, H. Li, E. Epelbaum, R. Fasbender, M. Batentschuk, and A. Winnacker. Radiat. Meas., 2001, 33, 669-674. https://doi.org/10.1016/S1350-4487(01)00081-6

    Article  CAS  Google Scholar 

  40. T. B. Bekker, V. P. Solntsev, A. P. Eliseev, and S. V. Rashchenko. Patent RU 2630511, 2017.

Download references

Funding

The reported study was funded by the Russian Science Foundation, project No. 21-19-00097.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rashchenko.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 12, pp. 2057-2067.https://doi.org/10.26902/JSC_id84794

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashchenko, S.V., Bekker, T.B. CRYSTAL CHEMISTRY OF NOVEL “ANTIZEOLITE” STRUCTURES. J Struct Chem 62, 1935–1945 (2021). https://doi.org/10.1134/S002247662112012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662112012X

Keywords

Navigation