Skip to main content
Log in

FTIR SPECTRAL STUDIES OF THE BINARY SOLUTIONS OF ACETONE WITH XYLENE ISOMERS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

FTIR spectra of neat acetone (ACT), xylene isomers (o-xylene (OXY), m-xylene (MXY), and p-xylene (PXY)) and their binary solutions at various ACT molar concentrations are recorded in the range of 4000-400 cm–1. Although neat ACT is a mixture of monomers, dimers, and trimers, the number of dimers is larger than that of monomers/trimers, as suggested by a relatively higher intensity of the dimmer ν(C=O) band with respect to that of the monomers/trimers. The shifts suffered by some of the fundamental absorption bands of xylene isomers/ACT confirm the presence of (ACT)C=O⋯H(OXY/MXY/PXY aromatic C–H or methyl) and (ACT methyl)H⋯π(OXY/MXY/PXY) H-bonds in all the solutions but with different strengths, as suggested by different magnitudes of the vibrational band shifts. The asymmetric and symmetric stretching bands of either C–H or CH3 of OXY/PXY experience unequal force constants in ACTOXY and ACTPXY binary solutions with a 0.2 mole fraction of ACT. The νas(C–H) doublet due to the intramolecular coupling appears only in ACTOXY and ACTPXY binary solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. G. M. Desiraju. The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press, 1999.

  2. G. F. Fabiola, S. Krishnaswamy, V. Nagarajan, and V. Pattabhi. Acta Crystallogr., Sect. D, 1997, 53, 316. https://doi.org/10.1107/S0907444997000383

    Article  CAS  Google Scholar 

  3. W. Schindler, P. T. Sharko, and J. J. Jonas. Chem. Phys., 1982, 76, 3493. https://doi.org/10.1063/1.443449

    Article  CAS  Google Scholar 

  4. B. Ancian, B. Tiffon, and J. E. Dubois. Chem. Phys., 1983, 74, 171. https://doi.org/10.1016/0301-0104(83)80020-2

    Article  CAS  Google Scholar 

  5. E. Kneozinger and R. Wittenbeck. J. Mol. Spectrosc., 1984, 105, 314. https://doi.org/10.1016/0022-2852(84)90221-2

    Article  Google Scholar 

  6. T. Shikata and N. Yoshida. J. Phys. Chem. A, 2012, 116, 4735. https://doi.org/10.1021/jp301520f

    Article  CAS  PubMed  Google Scholar 

  7. V. P. Bulychev, E. A. Svishcheva, and K. G. Tokhadze. Spectrochim. Acta, Part A, 2014, 117, 679. https://doi.org/10.1016/j.saa.2013.09.033

    Article  CAS  Google Scholar 

  8. A. V. Afonin and M. A. Andriyankov. Zh. Org. Khim., 1988, 24, 1034. [In Russian]

  9. H. Satonaka, K. Abe, and M. Hirota. Bull. Chem. Soc. Jpn., 1987, 60, 953. https://doi.org/10.1246/bcsj.60.953

    Article  CAS  Google Scholar 

  10. H. Satonaka, K. Abe, and M. Hirota. Bull. Chem. Soc. Jpn., 1988, 61, 2031. https://doi.org/10.1246/bcsj.61.2031

    Article  CAS  Google Scholar 

  11. I. E. Boldeskul, I. F. Tsymbal, E. V. Ryltsev, Z. Latajka, and A. J. Barnes. J. Mol. Struct., 1997, 436, 167. https://doi.org/10.1016/S0022-2860(97)00137-3

    Article  CAS  Google Scholar 

  12. P. Hobza, V. Spirka, L. H. Selzle, and W. E. Schlag. J. Phys. Chem. A, 1998, 102, 25. https://doi.org/10.1021/jp973374w

    Article  CAS  Google Scholar 

  13. J. W. Emsley, J. Feeney, and L. H. Sutcliffe. Progress in NMR spectroscopy. Oxford: Pergamon Press, 1978.

  14. M. R. Jalilian. Spectrochim. Acta, Part A, 2008, 69, 812. https://doi.org/10.1016/j.saa.2007.05.032

    Article  CAS  Google Scholar 

  15. L. I. De Beuckeleer and W. A. Herrebout. J. Phys. Chem. A, 2016, 120, 884. https://doi.org/10.1021/acs.jpca.5b10405

    Article  CAS  PubMed  Google Scholar 

  16. F. Kollipost, A. V. Domanskaya, and M. A. Suhm. J. Phys. Chem. A, 2015, 119, 2225. https://doi.org/10.1021/jp503999b

    Article  CAS  PubMed  Google Scholar 

  17. G. Arivazhagan, A. Elangovan, R. Shanmugam, R. Vijayalakshmi, and P. P. Kannan. Chem. Phys. Lett., 2015, 627, 101. https://doi.org/10.1016/j.cplett.2015.03.051

    Article  CAS  Google Scholar 

  18. D. L. Jadhav, N. K. Karthick, P. P. Kannan, R. Shanmugam, A. Elangovan, and G. Arivazhagan, J. Mol. Struct., 2017, 1130, 497. https://doi.org/10.1016/j.molstruc.2016.10.055

    Article  CAS  Google Scholar 

  19. S. K. Srivastava, A. K. Ojha, J. Koster, M. K. Shukla, J. Leszczynski, B. P. Asthana, and W. Kiefer. J. Mol. Struct., 2003, 661, 11. https://doi.org/10.1016/j.molstruc.2003.07.004

    Article  CAS  Google Scholar 

  20. M. Musso, M. G. Giorgini, and H. Torii. J. Mol. Liq., 2009, 147, 37. https://doi.org/10.1016/j.molliq.2008.08.006

    Article  CAS  Google Scholar 

  21. W. Schindler, P. T. Sharko, and J. J. Jonas. Chem. Phys., 1982, 76, 3493. https://doi.org/10.1063/1.443449

    Article  CAS  Google Scholar 

  22. B. Ancian, B. Tiffon, and J. E. Dubois. Chem. Phys., 1983, 74, 171. https://doi.org/10.1016/0301-0104(83)80020-2

    Article  CAS  Google Scholar 

  23. Y. Matsuda, K. Ohta, N. Mikami, and A. Fujii. Chem. Phys. Lett., 2009, 471, 50. https://doi.org/10.1016/j.cplett.2009.02.026

    Article  CAS  Google Scholar 

  24. J. Guan, Y. Hu, M. Xie, and E. R. Bernstein. Chem. Phys. Lett., 2012, 405, 117. https://doi.org/10.1016/j.chemphys.2012.06.017

    Article  CAS  Google Scholar 

  25. V. Arjunan, P. S. Balamourougane, I. Saravanan, and S. Mohan. Spectrochim. Acta, Part A, 2009, 74, 798. https://doi.org/10.1016/j.saa.2009.08.020

    Article  CAS  Google Scholar 

  26. E. L. Hommel and H. C. Allen. Analyst, 2003, 128, 750. https://doi.org/10.1039/B301032P

    Article  CAS  PubMed  Google Scholar 

  27. R. Lindenmaier, N. K. Scharko, R. G. Tonkyn, K. T. Nguyen, S. D. Williams, and T. J. Johnson. J. Mol. Struct., 2017, 1149, 332. https://doi.org/10.1016/j.molstruc.2017.07.053

    Article  CAS  Google Scholar 

  28. OriginPro 9.0. Northampton, MA, USA: OriginLab Corporation, n.d.

  29. M. Wojdyr. J. Appl. Crystallogr., 2010, 43, 1126. https://doi.org/10.1107/S0021889810030499

    Article  CAS  Google Scholar 

  30. J. D. Rogers, B. Rub, S. Goldman, and W. B. Person. J. Phys. Chem., 1981, 85, 3727. https://doi.org/10.1021/j150624a040

    Article  CAS  Google Scholar 

  31. S. W. Han and K. Kim. J. Phys. Chem., 1996, 100, 17124. https://doi.org/10.1021/jp961538n

    Article  CAS  Google Scholar 

  32. G. Varsanyi. Vibrational Spectra of Benzene Derivatives. New York: Academic Press, 1969. https://doi.org/10.1016/B978-0-12-714950-9.50007-7

  33. P. Larkin. In: Infrared and Raman Spectroscopy, Principles and Spectral Interpretation. New York: Elsevier, 2011, 7-25. https://doi.org/10.1016/B978-0-12-386984-5.10002-3

  34. J. H. S. Green. Spectrochim. Acta, Part A, 1970, 26, 1523. https://doi.org/10.1016/0584-8539(70)80213-6

    Article  CAS  Google Scholar 

  35. T. Sangeetha, P. P. Kannan, N. K. Karthick, A. Mahendraprabu, and G. Arivazhagan. J. Mol. Liq., 2020, 312, 113406. https://doi.org/10.1016/j.molliq.2020.113406

    Article  CAS  Google Scholar 

  36. D. R. Lide. CRC Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press, 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Arivazhagan.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 12, pp. 2028-2038.https://doi.org/10.26902/JSC_id84483

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naganandhini, S.P., Sangeetha, T. & Arivazhagan, G. FTIR SPECTRAL STUDIES OF THE BINARY SOLUTIONS OF ACETONE WITH XYLENE ISOMERS. J Struct Chem 62, 1907–1917 (2021). https://doi.org/10.1134/S0022476621120106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621120106

Keywords

Navigation