Skip to main content
Log in

STUDY OF THE CORRELATION BETWEEN THE STRUCTURE OF THE [Ir(сod)Cp] COMPLEX AND ITS THERMAL PROPERTIES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A volatile iridium(I) complex [Ir(cod)Cp] (cod - 1,5-cyclooctadiene, Cp - cyclopentadienyl) is synthesized and characterized by IR and NMR spectroscopy. The structure of [Ir(cod)Cp] is determined by single crystal X-ray diffraction. The analysis of the Hirshfeld surface along with the electron density distribution and its topology based on the AIM theory reveals the presence of many intermolecular contacts, with C(Cp)⋯H(Cp), Ir⋯H(Cp), H(cod)⋯H(cod) being the strongest. The presence of these contacts in the crystal structure of the compound leads to higher melting points and transition temperatures to the gas phase, as compared to those of a similar complex containing methyl-substituted cyclopentadienyl. Lattice energy calculations and results of the thermogravimetric analysis of the [Ir(cod)Cp] complex are well consistent with the similar data for β-diketonate complexes [Ir(cod)L], which suggests that there may be a correlation between lattice energies and melting and a 50% weight loss temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. S. Schlicht, S. Haschke, V. Mikhailovskii, A. Manshina, and J. Bachmann. ChemElectroChem, 2018, 5, 1259. https://dx.doi.org/10.1002/celc.201800152

  2. L. Jürgensen, M. Frank, M. Pyeon, L. Czympiel, and S. Mathur. Organometallics, 2017, 36, 2331. https://dx.doi.org/10.1021/acs.organomet.7b00275

  3. K. I. Karakovskaya, S. I. Dorovskikh, E. S. Vikulova, I. Y. Ilyin, K. V. Zherikova, T. V. Basova, and N. B. Morozova. Coatings, 2021, 11, https://dx.doi.org/10.3390/coatings11010078

  4. D. C. Rodger, A. J. Fong, W. Li, H. Ameri, A. K. Ahuja, C. Gutierrez, I. Lavrov, H. Zhong, P. R. Menon, E. Meng, J. W. Burdick, R. R. Roy, V. R. Edgerton, J. D. Weiland, M. S. Humayun, and Y.-C. Tai. Sens. Actuators, B, 2008, 132, 449. http://dx.doi.org/10.1016/j.snb.2007.10.069

  5. W.-P. Wu and Z.-F. Chen. Johnson Matthey Technol. Rev., 2017, 61, 16. https://dx.doi.org/10.1595/205651317X693606

  6. W. Wu, J. Jiang, and Z. Chen. Acta Astronaut., 2016, 123, 1. http://dx.doi.org/10.1016/j.actaastro.2016.03.004

  7. L. N. Zelenina, K. V. Zherikova, T. P. Chusova, S. V. Trubin, R. A. Bredikhin, N. V. Gelfond, and N. B. Morozova. Thermochim. Acta, 2020, 689, 178639. https://doi.org/10.1016/j.tca.2020.178639

    Article  CAS  Google Scholar 

  8. E. S. Vikulova, K. I. Karakovskaya, I. Y. Ilyin, E. A. Kovaleva, D. A. Piryazev, L. N. Zelenina, S. V. Sysoev, N. B. Morozova, and K. V. Zherikova. Phys. Chem. Chem. Phys., 2021, 23, 9889. https://dx.doi.org/10.1039/D1CP00464F

  9. G. I. Zharkova, S. V. Sysoev, P. A. Stabnikov, V. A. Logvinenko, and I. K. Igumenov. J. Therm. Anal. Calorim., 2011, 103, 381. https://dx.doi.org/10.1007/s10973-010-0949-8

  10. S. D. Robinson and B. L. Shaw. J. Chem. Soc., 1965, 4997. https://dx.doi.org/10.1039/JR9650004997

  11. G. Pannetier, D. Tabrizi, and R. Bonnaire. J. Less-Common Met., 1971, 24, 470. https://dx.doi.org/10.1016/0022-5088(71)90033-6

  12. S. Klamklang, H. Vergnes, F. Senocq, K. Pruksathorn, P. Duverneuil, and S. Damronglerd. J. Appl. Electrochem., 2010, 40, 997. https://dx.doi.org/10.1007/s10800-009-9968-1

  13. F. Maury and F. Senocq. Surf. Coat. Technol., 2003, 163/164, 208. http://dx.doi.org/10.1016/S0257-8972(02)00485-1

  14. B. H. Choi, J. H. Lee, H. K. Lee, and J. H. Kim. Appl. Surf. Sci., 2011, 257, 9654. http://dx.doi.org/10.1016/j.apsusc.2011.06.093

  15. Y. Ritterhaus, T. Huryeva, M. Lisker, and E. P. Burte. Chem. Vap. Deposition, 2007, 13, 698. https://dx.doi.org/10.1002/cvde.200706630

  16. D. V. Bonegardt, I. Y. Ilyin, T. S. Sukhikh, E. V. Ilyina, and N. B. Morozova. J. Struct. Chem., 2020, 61, 456. https://dx.doi.org/10.1134/S0022476620030129

  17. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, and K. I. Goldberg. Organometallics, 2010, 29, 2176. https://dx.doi.org/10.1021/om100106e

  18. APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11), SHELXTL (Version 6.12). Madison, Wisconsin, USA: Bruker AXS Inc., 2004.

  19. G. Sheldrick. Acta Crystallogr., Sect. A, 2015, 71, 3. https://dx.doi.org/10.1107/S2053273314026370

  20. G. Sheldrick. Acta Crystallogr., Sect. C, 2015, 71, 3. https://dx.doi.org/doi:10.1107/S2053229614024218

  21. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339. https://dx.doi.org/doi:10.1107/S0021889808042726

  22. ADF 2017, SCM. Amsterdam, The Netherlands: Theoretical Chemistry, Vrije Universiteit, 2017. http://www.scm.com

  23. E. Van Lenthe and E. J. Baerends. J. Comput. Chem., 2003, 24, 1142. https://dx.doi.org/10.1002/jcc.10255

  24. M. Swart. Chem. Phys. Lett., 2013, 580, 166. https://dx.doi.org/10.1016/j.cplett.2013.06.045

  25. E. V. Lenthe, E. J. Baerends, and J. G. Snijders. J. Chem. Phys., 1993, 99, 4597. https://dx.doi.org/10.1063/1.466059

  26. J. I. Rodríguez. J. Comput. Chem., 2013, 34, 681. https://dx.doi.org/10.1002/jcc.23180

  27. P. Popelier and P. L. A. Popelier. Atoms in Molecules: An Introduction. Prentice Hall, 2000.

  28. M. Graf, H.-C. Böttcher, P. Mayer, and M. Scheer. Z. Anorg. Allg. Chem., 2017, 643, 1323. https://dx.doi.org/10.1002/zaac.201700150

  29. J. A. Hamilton, T. Pugh, A. L. Johnson, A. J. Kingsley, and S. P. Richards. Inorg. Chem., 2016, 55, 7141. https://dx.doi.org/10.1021/acs.inorgchem.6b01146

  30. K. Angermund, K. H. Claus, R. Goddard, and C. Krüger. Angew. Chem., Int. Ed. Engl., 1985, 24, 237. https://doi.org/https://doi.org/10.1002/anie.198502373

    Article  Google Scholar 

  31. K. V. Zherikova, N. B. Morozova, and I. A. Baidina. J. Struct. Chem., 2009, 50(3), 570. https://doi.org/10.1007/s10947-009-0087-y

    Article  CAS  Google Scholar 

  32. E. Espinosa, E. Molins, and C. Lecomte. Chem. Phys. Lett., 1998, 285, 170. https://doi.org/https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  33. B. Landeros-Rivera, R. Moreno-Esparza, and J. Hernández-Trujillo. RSC Adv., 2016, 6, 77301. https://doi.org/10.1039/C6RA14957J

    Article  CAS  Google Scholar 

  34. M. A. Spackman. Cryst. Growth Des., 2015, 15, 5624. https://doi.org/10.1021/acs.cgd.5b01332

    Article  CAS  Google Scholar 

  35. C. Lecomte, E. Espinosa, and C. F. Matta. IUCrJ, 2015, 2, 161. https://doi.org/10.1107/S2052252515002067

    Article  CAS  Google Scholar 

  36. E. S. Vikulova, I. Y. Ilyin, K. I. Karakovskaya, D. A. Piryazev, A. E. Turgambaeva, and N. B. Morozova. J. Coord. Chem., 2016, 69, 2281. https://doi.org/10.1080/00958972.2016.1198955

    Article  CAS  Google Scholar 

Download references

Funding

Works on the synthesis and characterization of the complex were supported by RFBR and the Government of Novosibirsk Oblast’ within research project No. 19-43-543041.

Quantum chemical calculations were performed within the State Assignment for the Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences with the support of the Ministry of Science and Higher Education of the Russian Federation (projects Nos. 121031700314-5 and 121031700313-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Ilyin.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 12, pp. 1982-1990.https://doi.org/10.26902/JSC_id83923

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyin, I.Y., Mirzaeva, I.V., Sukhikh, T.S. et al. STUDY OF THE CORRELATION BETWEEN THE STRUCTURE OF THE [Ir(сod)Cp] COMPLEX AND ITS THERMAL PROPERTIES. J Struct Chem 62, 1863–1871 (2021). https://doi.org/10.1134/S0022476621120064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621120064

Keywords

Navigation