Skip to main content
Log in

ELECTRONIC STRUCTURE OF DIOXIDE CfO2

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The electronic structure of CfO2 is calculated in the fully relativistic cluster approximation of the discrete variation method (RDV). Theoretical X-ray photoelectron spectroscopy (XPS) spectrum of valence electrons is obtained in the range of electron binding energies 0 -…~40 eV. It is shown that outer valence molecular orbitals (OVMOs) in the energy range 0 -…~15 eV are formed by atomic orbitals Cf 5f and Cf 6p. The inner valence molecular orbitals (IVMOs) in the energy range ~15 -…~40 eV are formed mainly by Cf 6p3/2 and O 2s AOs. Significant covalent effects in CfO2 are due to the strong overlap of AOs with the ligand′s orbitals such as Cf 6d as well as Cf 5f and Cf 6p. The structure of MOs formed by Cf 6d, 7s, and 7p AOs differs only slightly from those of dioxides of lighter actinides. These MOs, together with those containing O 2s and O 2p AOs, form a “rigid framework” where MOs containing An 5f AOs move. We suggest a theoretical scheme of MOs that allows understanding the nature of chemical bonding and the structure of the XPS spectrum of valence electrons in CfO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. J. J. Katz, G. T. Seaborg, and L. R. Morss. The Chemistry of the Actinide Elements. London-New York: Chapman and Hall, 1986.

  2. M. P. Mefodeva and N. N. Krot. Soedineniya transuranovykh elementov (Compounds of Transuranic Elements). Moscow: Nauka, 1987. [In Russian]

  3. B. W. Veal, H. Diamond, and H. R. Hoekstra. Phys. Rev. B, 1977, 15(6), 2929. https://doi.org/10.1103/PhysRevB.15.2929

    Article  CAS  Google Scholar 

  4. X.-D. Wen, R. L. Martin, T. M. Henderson, and G. E. Scuseria. Chem. Rev., 2013, 113, 1063. https://doi.org/10.1021/cr300374y

    Article  CAS  PubMed  Google Scholar 

  5. L. Petit, A. Svane, Z. Szotek, W. M. Temmerman, and G. M. Stocks. Phys. Rev. B, 2010, 81, 045108. https://doi.org/10.1103/PhysRevB.81.045108

    Article  Google Scholar 

  6. I. D. Prodan, G. E. Scuseria, and R. L. Martin. Phys. Rev. B, 2007, 76, 033101. https://doi.org/10.1103/PhysRevB.76.033101

    Article  Google Scholar 

  7. A. Y. Teterin, M. V. Ryzhkov, Y. A. Teterin, L. Vukcevic, V. A. Terekhov, K. I. Maslakov, and K. E. Ivanov. Radiochemistry, 2009, 51, 560.

  8. Yu. A. Teterin and A. Yu. Teterin. Radiochemistry, 2005, 47, 440.

  9. Yu. A. Teterin, A. Yu. Teterin, K. E. Ivanov, M. V. Ryzhkov, K. I. Maslakov, St. N. Kalmykov, V. G. Petrov, and D. A. Enina. Phys. Rev. B, 2014, 89, 035102. https://doi.org/10.1103/PhysRevB.89.035102

    Article  Google Scholar 

  10. Yu. A. Teterin, K. I. Maslakov, A. Yu. Teterin, K. E. Ivanov, M. V. Ryzhkov, V. G. Petrov, D. A. Enina, and St. N. Kalmykov. Phys. Rev. B, 2013, 87, 245108. https://doi.org/10.1103/PhysRevB.87.245108

    Article  Google Scholar 

  11. Y. A. Teterin, K. I. Maslakov, M. V. Ryzhkov, A. Y. Teterin, K. E. Ivanov, S. N. Kalmykov, and V. G. Petrov. Nucl. Technol. Radiat. Prot., 2015, 30(2), 83. https://doi.org/10.2298/NTRP1502083T

    Article  Google Scholar 

  12. R. D. Baybarz, R. G. Haire, and J. A. Fahey. J. Inorg. Nucl. Chem., 1972, 34, 557.

  13. A. Rosen and D. E. Ellis. J. Chem. Phys., 1975, 62, 3039. https://doi.org/10.1063/1.430892

    Article  CAS  Google Scholar 

  14. D. E. Ellis and G. L. Goodman. Int. J. Quant. Chem., 1984, 25, 185. https://doi.org/10.1002/qua.560250115

    Article  CAS  Google Scholar 

  15. O. Gunnarsson and B. I. Lundqvist. Phys. Rev. B, 1976, 13, 4274. https://doi.org/10.1103/PhysRevB.13.4274

    Article  CAS  Google Scholar 

  16. P. Pyykko and H. Toivonen. Acta Acad. Abo., Ser. B, 1983, 43, 1-50.

  17. D. A. Varshalovish, A. N. Moskalev, and V. K. Khersonskii. Quantum Theory of Angular Momentum. Singapore: World Scientific, 1988.

  18. Yu. A. Teterin and S. G. Gagarin. Russ. Chem. Rev., 1996, 65, 825.

  19. Yu. A. Teterin and A. Yu. Teterin. Russ. Chem. Rev., 2004, 73, 541.

  20. R. S. Mulliken. Annu. Rev. Phys. Chem., 1978, 29, 1. https://doi.org/10.1146/annurev.pc.29.100178.000245

    Article  CAS  PubMed  Google Scholar 

  21. P. J. Kelly, M. S. Brooks, and R. Allen. J. Phys., 1979, 40(C4), 184-186. DOI: 10.1051/jphyscol:1979458

  22. V. A. Gubanov, A. Rosen, and D. E. Ellis. J. Phys. Chem. Solids, 1979, 40, 17. https://doi.org/10.1016/0022-3697(79)90090-8

    Article  CAS  Google Scholar 

  23. A. Zaitsevskii, L. V. Skripnikov, and A. V. Titov. Mendeleev Commun., 2016, 26, 307. https://doi.org/10.1016/j.mencom.2016.07.013

    Article  CAS  Google Scholar 

  24. K. I. Maslakov, Yu. A. Teterin, A. J. Popel, A. Yu. Teterin, K. E. Ivanov, St. N. Kalmykov, V. G. Petrov, P. K. Petrov, and I. Farnan. Appl. Surf. Sci., 2018, 448, 154. https://doi.org/10.1016/j.apsusc.2018.04.077

    Article  CAS  Google Scholar 

  25. K. I. Maslakov, Yu. A. Teterin, M. V. Ryzhkov, A. J. Popel, A. Yu. Teterin, K. E. Ivanov, St. N. Kalmykov, V. G. Petrov, P. K. Petrov, and I. Farnan. Phys. Chem. Chem. Phys., 2018, 20(23), 16167. https://doi.org/10.1039/c8cp01442f

    Article  CAS  PubMed  Google Scholar 

  26. M. B. Trzhaskovskaya and V. G. Yarzhemsky. Atom. Data Nucl. Data, 2018, 119, 99. https://doi.org/10.1016/j.adt.2017.04.003

    Article  CAS  Google Scholar 

  27. J. C. Slater and K.H. Johnson. Phys. Rev. B, 1972, 5, 844.

  28. V. G. Yarzhemsky, A. Yu. Teterin, Yu. A. Teterin, and M. B. Trzhaskovskaya. Nucl. Technol. Radiat. Prot., 2012, 27, 103. https://doi.org/10.2298/NTRP1202103Y

    Article  CAS  Google Scholar 

  29. K. N. Huang, M. Aojogi, M. N. Chen, B. Graseman, and H. Mark. At. Data Nucl. Data Tables, 1976, 18, 243. https://doi.org/10.1016/0092-640X(76)90027-9

    Article  CAS  Google Scholar 

Download references

Funding

The reported study was funded by RFBR, project No. 20-03-00333.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Teterin.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 12, pp. 1963-1974.https://doi.org/10.26902/JSC_id83848

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putkov, A.E., Maslakov, K.I., Teterin, Y.A. et al. ELECTRONIC STRUCTURE OF DIOXIDE CfO2. J Struct Chem 62, 1846–1856 (2021). https://doi.org/10.1134/S0022476621120040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621120040

Keywords

Navigation