Skip to main content
Log in

STRUCTURES AND THERMAL PROPERTIES OF SILVER(I) β-DIKETONATES WITH BULKY TERMINAL SUBSTITUENTS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Silver β-diketonates [Ag(RC(O)CHC(O)R′)] with bulky terminal substituents are synthesized and characterized: R = C(OCH3)(CH3)2, R′ = CF3 (1), R = R′ = C(CH3)3 (2). Complex 1 is obtained for the first time. Structures of compounds are determined by single crystal X-ray diffraction. For complex 1 the crystallographic data are: space group \(P\bar{1}\), a = 5.8012(6) Å, b = 9.1717(10) Å, c = 9.9251(11) Å, α = 73.722(4)°, β = 78.377(4)°, γ = 87.336(4)°, V = 496.49(9) Å3, Z = 2, dcalc = 2.134 g/cm3, μ = 2.059 mm–1; for complex 2: space group C2, a = 22.1700(6) Å, b = 5.84530(10) Å, c = 9.3249(2) Å, β = 104.9670(10)°, V = 1167.42(5) Å3, Z = 4, dcalc = 1.656 g/cm3, μ = 1.701 mm–1. Both compounds are chain coordination polymers. Anions are coordinated in a bidentate-cyclic fashion. One of carbonyl oxygen atoms and the carbon atom in the CH-group perform the bridging function. In complex 2, the coordination environment of silver is a distorted vacant trigonal bipyramid (CN = 4). In complex 1, it is a tetragonal pyramid due to the additional coordination of the methoxy oxygen atom of the neighboring anion (CN = 5). The structure and thermal stability of the synthesized complexes are compared with those of the closest analogue (R = C(CH3)3, R′ = CF3), which allowed us to reveal the effect of terminal substituents in the β-diketonate ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. H. X. Ruan. 1,1,1-(trifluoroacetylacetonato)silver(I) Used for Photochemical and Thermal Deposition of Silver and Silver Oxide Film and Its Kinetics: M. Sc. (Chem.) Dissertation. Bumaby, BC, Canada: Simon Fraser University, 2007.

  2. J. D. Warner, M. Pevzner, C. J. Dean, D. E. Kranbuehl, J. L. Scott, S. T. Broadwater, D. W. Thompson, and R. E. Southward. J. Mater. Chem., 2003, 13, 1847-1852. https://doi.org/10.1039/B212546C

    Article  CAS  Google Scholar 

  3. G. Carotenuto, M. Palomba, A. Longo, S. De Nicola, and L. Nicolais. Sci. Eng. Compos. Mater., 2011, 18, 187-190. https://doi.org/10.1515/secm.2011.030

    Article  Google Scholar 

  4. G. Calabrese, S. Petralia, D. Franco, G. Nocito, C. Fabbi, L. Forte, S. Guglielmino, S. Squarzoni, F. Traina, and S. Conoci. Mater. Sci. Eng. C, 2021, 118, 111394. https://doi.org/10.1016/j.msec.2020.111394

    Article  CAS  Google Scholar 

  5. A. O. Rybaltovskii, V. G. Arakcheev, A. N. Bekin, A. F. Danilyuk, V. I. Gerasimova, N. V. Minaev, E. N. Golubeva, O. O. Parenago, and V. N. Bagratashvili. Russ. J. Phys. Chem. B, 2015, 9, 1137-1142. https://doi.org/10.1134/S1990793115080096

    Article  CAS  Google Scholar 

  6. S. E. Bozbağ and C. Erkey. J. Supercrit. Fluids, 2015, 96, 298-312. https://doi.org/10.1016/j.supflu.2014.09.036

    Article  CAS  Google Scholar 

  7. C. N. Chen, T. Y. Dong, T. C. Chang, M. C. Chen, H. L. Tsai, and W. S. Hwang. J. Mater. Chem. C, 2013, 1, 5161-5168. https://doi.org/10.1039/C3TC30911H

    Article  CAS  Google Scholar 

  8. A. Ievtushenko, V. Karpyna, J. Eriksson, I. Tsiaoussis, I. Shtepliuk, G. Lashkarev, R.Yakimova, and V. Khranovskyy. Superlattices Microstruct., 2018, 117, 121-131. https://doi.org/10.1016/j.spmi.2018.03.029

    Article  CAS  Google Scholar 

  9. P. Piszczek and A. Radtke. Silver Nanoparticles Fabricated Using Chemical Vapor Deposition and Atomic Layer Deposition Techniques: Properties, Applications And Perspectives: Review. In: Noble and Precious Metals - Properties, Nanoscale Effects and Applications / Eds. M. S. Seehra and A. D  Bristow. London: IntechOpen, 2018, 187-213. https://doi.org/10.5772/intechopen.71571

  10. O. Aschenbrenner, S. Kemper, N. Dahmen, K. Schaber, and E. Dinjus. J. Supercrit. Fluids, 2007, 41, 179-186. https://doi.org/10.1016/j.supflu.2006.10.011

    Article  CAS  Google Scholar 

  11. S. Yoda, Y. Mizuno, T. Furuya, Y. Takebayashi, K. Otake, T. Tsuji, and T. Hiaki. J. Supercrit. Fluids, 2008, 44, 139-147. https://doi.org/10.1016/j.supflu.2007.11.002

    Article  CAS  Google Scholar 

  12. A. J. Blake, N. R. Champness, S. M. Howdle, K. S. Morley, P. B. Webb, and C. Wilson. CrystEngComm, 2002, 4, 88-92. https://doi.org/10.1039/B200491G

    Article  CAS  Google Scholar 

  13. K. Akhbari and A. Morsali. Cryst. Growth Des., 2007, 7, 2024-2030. https://doi.org/10.1021/cg0704652

    Article  CAS  Google Scholar 

  14. F. Marandi, M. Ghadermazi, A. Marandi, I. Pantenburg, and G. Meyer. J. Mol. Struct., 2011, 1006, 136-141. https://doi.org/10.1016/j.molstruc.2011.08.059

    Article  CAS  Google Scholar 

  15. C. Xu, T. S. Corbitt, M. J. Hampden-Smith, T. T. Kodas, and E. N. Duesler. J. Chem. Soc., Dalton Trans., 1994, 2841-2849. https://doi.org/10.1039/DT9940002841

    Article  Google Scholar 

  16. W. J. Evans, D. G. Giarikos, and D. Josell. Inorg. Chem., 2003, 42, 8255-8261. https://doi.org/10.1021/ic034649r

    Article  CAS  PubMed  Google Scholar 

  17. D. Henderson, F. White, and P. Tasker. CCDC 1410146: Experimental Crystal Structure Determination, 2015. https://doi.org/10.5517/cc1jbclt

  18. S. Patterson, D. Henderson, and P. Tasker. CCDC 1410235: Experimental Crystal Structure Determination, 2015. https://doi.org/10.5517/cc1jbggs

  19. I. S. Fedoseev, E. S. Vikulova, I. Y. Ilin, A. I. Smolentsev, M. R. Gallyamov, and N. B. Morozova. J. Struct. Chem., 2016, 57(8), 1667-1670. https://doi.org/10.1134/S0022476616080242

    Article  CAS  Google Scholar 

  20. I. K. Igumenov, T. V. Basova, and V. R. Belosludov. Volatile Precursors for Films Deposition: Vapor Pressure, Structure and Thermodynamics. In: Application of Thermodynamics to Biological and Materials Science / Ed. M. Tadashi. London: IntechOpen, 2011, 521-546. https://doi.org/10.5772/13356

  21. S. C. Ngo, K. K. Banger, P. J. Toscano, and J. T. Welch. Polyhedron, 2002, 21, 1289-1297. https://doi.org/10.1016/S0277-5387(02)00980-4

    Article  CAS  Google Scholar 

  22. V. P. Fadeeva, V. D. Tikhova, O. N. Nikulicheva, I. I. Oleynik, and I. V. Oleynik. J. Struct. Chem., 2010, 51, 186-191. https://doi.org/10.1007/s10947-010-0211-z

    Article  CAS  Google Scholar 

  23. V. P. Fadeeva, V. D. Tikhova, and O. N. Nikulicheva. J. Anal. Chem., 2008, 63, 1094. https://doi.org/10.1134/S1061934808110142

    Article  CAS  Google Scholar 

  24. Powder Diffraction File, release 2010, International Centre for Diffraction Data, Pennsylvania, USA. http://www.icdd.com/products/pdf2.htm

  25. T. Li, M. T. Gamer, M. Scheer, S. N. Konchenko, and P. W. Roesky. Chem. Comm., 2013, 49, 2183-2185 (Supplementary information). https://doi.org/10.1039/C3CC38841G

    Article  CAS  Google Scholar 

  26. Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT, Version 2018.7-2. Madison, WI: Bruker AXS Inc., 2017.

  27. G. M. Sheldrick. Acta Crystallogr., Sect. A., 2015, 71, 3-8. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  28. G. M. Sheldrick. Acta Crystallogr., Sect. C, 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  29. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339-341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  30. S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, and D. Avnir. Coord. Chem. Rev., 2005, 249, 1693-1708. https://doi.org/10.1016/j.ccr.2005.03.031

    Article  CAS  Google Scholar 

  31. M. Llunell, D. Casanova, J. Cirera, P. Alemany, and S. Alvarez. SHAPE, Version 2.1. Spain: Universitat de Barcelona, 2013. http://www.ee.ub.edu/

  32. J. A. Darr, M. Poliakoff, A. J. Blake, and W. S. Li. Inorg. Chem., 1998, 37, 5491-5496. https://doi.org/10.1021/ic971206c

    Article  CAS  PubMed  Google Scholar 

  33. L. Zanotto, F. Benetollo, M. Natali, G. Rossetto, P. Zanella, S. Kaciulis, and A. Mezzi. Chem. Vapor Depos., 2004, 10, 207-213. https://doi.org/10.1002/cvde.200306290

    Article  CAS  Google Scholar 

  34. F. Marandi, M. Ghadermazi, A. Marandi, I. Pantenburg, and G. Meyer. J. Mol. Struct., 2011, 1006, 136-141. https://doi.org/10.1016/j.molstruc.2011.08.059

    Article  CAS  Google Scholar 

  35. H. Liu, S. Battiato, A. L. Pellegrino, P. Paoli, P. Rossi, C. Jiménez, G. Malandrino, and D. Muñoz-Rojas. Dalton Trans., 2017, 46, 10986-10995. https://doi.org/10.1039/C7DT01647F

    Article  CAS  PubMed  Google Scholar 

  36. J. L. Jin, Y. L. Shen, Y. P. Xie, and X. Lu. CrystEngComm, 2018, 20, 2036-2042. https://doi.org/10.1039/C8CE00243F

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by grant MK-6148.2021.1.3 of the President of the Russian Federation for young scientists–candidates of science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gulyaev.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 12, pp. 1953-1962.https://doi.org/10.26902/JSC_id83846

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulyaev, S.A., Vikulova, E.S., Sukhikh, T.S. et al. STRUCTURES AND THERMAL PROPERTIES OF SILVER(I) β-DIKETONATES WITH BULKY TERMINAL SUBSTITUENTS. J Struct Chem 62, 1836–1845 (2021). https://doi.org/10.1134/S0022476621120039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621120039

Keywords

Navigation