Skip to main content
Log in

SUBSTITUENT EFFECT IN [2+4] DIELS–ALDER CYCLOADDITION REACTIONS OF ANTHRACENE WITH C2X2 (X = H, F, Cl, Me): A COMPUTATIONAL INVESTIGATION

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

In the present article, a DFT approach is used at the M06-2X/6-311G(d,p) level of theory to survey [2+4] Diels–Alder cycloaddition reactions of anthracene with C2X2 (X = H, F, Cl, Me). To illustrate the interaction between two fragments in transition states and products, the energy decomposition analysis is employed. The stability of two feasible products are contrasted. The substituent impact barrier height (ΔE) and thermodynamic parameters (ΔG and ΔH) of this reaction are found. To check the advancement of the reactions, Wiberg bond indices are applied. Furthermore, the synchronicity values of this reaction are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. F. Fringuelli and A. Taticchi. The Diels-Alder Reaction. Selected Practical Methods. John Wiley & Sons: New York, 2002. https://doi.org/10.1002/0470845813

  2. I. Fleming. Pericyclic Reactions. Oxford University Press: New York, 1999.

  3. K. C. Nicolau, S. A. Snyder,T. Montagnon, and G. Vassilikogiannakis. Angew. Chem., Int. Ed., 2002, 41, 1668. https://doi.org/10.1002/1521-3773(20020517)41:10%3C1668::AID-ANIE1668%3E3.0.CO;2-Z

    Article  CAS  Google Scholar 

  4. O. Diels and K. Alder. Justus Liebigs Ann. Chem., 1928, 98, 460. https://doi.org/10.1002/jlac.19284600106

    Article  CAS  Google Scholar 

  5. W. Carruthers. Some Modern Methods of Organic Synthesis, 2nd ed. Cambridge University Press: Cambridge, UK, 1978.

  6. W. Carruthers. Cycloaddition Reactions in Organic Synthesis. Pergamon: Oxford, UK, 1990.

  7. P. Geerlings, F. D. Proft, and W. Langenaeker. Chem. Rev., 2003, 103, 1793. https://doi.org/10.1021/cr990029p

    Article  CAS  PubMed  Google Scholar 

  8. D. H. Ess, G. O. Jones, and K. N. Houk. Adv. Synth. Catal., 2006, 348, 2337. https://doi.org/10.1002/adsc.200600431

    Article  CAS  Google Scholar 

  9. C. M. Ormachea, P. M. E. Mancini, M. N. Kneeteman, and L. R. Domingo. Comput. Theor. Chem., 2015, 1072, 37. https://doi.org/10.1016/j.comptc.2015.08.024

    Article  CAS  Google Scholar 

  10. A. M. Sarotti. Org. Biomol. Chem., 2014, 12, 187. https://doi.org/10.1039/C3OB41628C

    Article  CAS  PubMed  Google Scholar 

  11. P. M. E. Mancinia, M. N. Kneeteman, M. Cainelli, C. M. Ormachea, and L. R. Domingo. J. Mol. Struct., 2017, 1147, 155. https://doi.org/10.1016/j.molstruc.2017.06.109

    Article  CAS  Google Scholar 

  12. R. Breslow, U. Maitra, and D. Rideout. Tetrahedron Lett., 1983, 24, 1901. https://doi.org/10.1016/S0040-4039(00)81801-8

    Article  CAS  Google Scholar 

  13. C. Cativiela, J. I. Garcia, J. A. Mayoral, A. Avenoza, J. M. Peregrina, and M. A. Roy. J. Phys. Org. Chem., 1991, 4, 48. https://doi.org/10.1002/poc.610040108

    Article  CAS  Google Scholar 

  14. C. Cativiela, J. I. García, J. A. Mayoral, and L. Salvatella. J. Chem. Soc., Perkin Trans., 1994, 847. https://doi.org/10.1039/P29940000847

    Article  Google Scholar 

  15. M. F. Ruiz-López, X. Assfeld, J. I. X. García, J. A. Mayoral, and L. Salvatella. J. Am. Chem. Soc., 1993, 115, 8780. https://doi.org/10.1021/ja00072a035

    Article  CAS  Google Scholar 

  16. H. J. Schneider and N. K. Sangwan. Angew. Chem., Int. Ed., 1987, 26, 896. https://doi.org/10.1002/anie.198708961

    Article  Google Scholar 

  17. R. Bini, C. Chiappe, V. L. Mestre, C. S. Pomellic, and T. Welton. Org. Biomol. Chem., 2008, 6, 2522. https://doi.org/10.1039/b802194e

    Article  CAS  PubMed  Google Scholar 

  18. C. Chiappe, M. Malvaldi, and C. S. Pomelli. Green Chem., 2010, 12, 1330. https://doi.org/10.1039/c0gc00074d

    Article  CAS  Google Scholar 

  19. R. Bini, C. Chiappe, V. L. Mestre, and C. S. Pomelli, T. Welton. Theor. Chem. Acc., 2009, 123, 347. https://doi.org/10.1007/s00214-009-0525-0

    Article  CAS  Google Scholar 

  20. E. S. Ansari, R. Ghiasi, and A. Forghaniha. Struct. Chem., 2019, 30, 877–885. https://doi.org/10.1007/s11224-018-1241-y

    Article  CAS  Google Scholar 

  21. E. S. Ansari, R. Ghiasi, and A. Forghaniha. Chem. Methodol., 2020, 4, 220. https://dx.doi.org/10.33945/SAMI/CHEMM/2020.3.1

  22. G. H. Sarova and M. N. Berberan-Santos. Chem. Phys. Lett., 2004, 397, 402. https://doi.org/10.1016/j.cplett.2004.09.005

    Article  CAS  Google Scholar 

  23. T. Tsuda, T. Ishida, T. Nogami, S. Kurono, and M. Ohashi. J. Chem. Soc., Chem. Commun., 1993, 1296. https://doi.org/10.1039/C39930001296

    Article  Google Scholar 

  24. Y. Rubin, S. Khan, D. I. Freedberg, and C. Yeretzian. J. Am. Chem. Soc., 1993, 115, 344. https://doi.org/10.1021/ja00054a049

    Article  CAS  Google Scholar 

  25. M. Randic. Chem. Rev., 2003, 103, 3449. https://doi.org/10.1021/cr9903656

    Article  CAS  PubMed  Google Scholar 

  26. M. E. Hayes, H. Shinokubo, and R. L. Danheiser. Org. Lett., 2005, 7, 3917. https://doi.org/10.1021/ol051372l

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. B. Liu, Q. Hu, F. Yang, X. Zheng, and Y. Hu. Chin. Chem. Lett., 2020, 31(5), 1305. https://doi.org/10.1016/j.cclet.2019.10.003

    Article  CAS  Google Scholar 

  28. M. A. Sultan, U. Karama, A. I. Almansour, and S. M. Soliman. Molecules, 2016, 21, 1277. https://doi.org/10.3390/molecules21101277

    Article  CAS  PubMed Central  Google Scholar 

  29. S. Agopcan, N. Çelebi-Ölçüm, M. N. Üçışık, A. Sanyala, and V. Aviyente. Org. Biomol. Chem., 2011, 9, 8079. https://doi.org/10.1039/c1ob06285a

    Article  CAS  PubMed  Google Scholar 

  30. W. C. Herndon. J. Chem. Soc., Chem. Commun., 1977, 817. https://doi.org/10.1039/c39770000817

    Article  Google Scholar 

  31. W. C. Herndon, and M. L. Ellzey Jr. J. Am. Chem. Soc., 1974, 96, 6631. https://doi.org/10.1021/ja00828a015

    Article  CAS  Google Scholar 

  32. A. F. Khasanov, D. S. Kopchuk, I. S. Kovalev, O. S. Taniya, K.Giri, P. A. Slepukhin, S. Santra, M. Rahman, A. Majee, V. N. Charushin, and O. N. Chupakhin. New J. Chem., 2017, 41, 2309. https://doi.org/10.1039/C6NJ02956F

    Article  CAS  Google Scholar 

  33. Q. C. Zhang, J. Lv, S. Li, and S. Luo. Org. Lett., 2018, 20, 2269. https://doi.org/10.1021/acs.orglett.8b00619

    Article  CAS  PubMed  Google Scholar 

  34. J. P. Hernández-Mancera, F. Núñez-Zarur, and R. Vivas-Reyes. ChemistryOpen, 2020, 9, 748. https://doi.org/10.1002/open.202000137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. Stockmann, J. Kurzawa, N. Fritz, N. Acar, S. Schneider, J. Daub, R. Engl, and T. Clark. J. Phys. Chem. A, 2002, 106, 7958. https://doi.org/10.1021/jp0142987

    Article  CAS  Google Scholar 

  36. M. Ottonelli, M. Piccardo, D. Duce, S. Thea, and G. Dellepiane. J. Phys. Chem. A, 2012, 116, 611. https://doi.org/10.1021/jp2084764

    Article  CAS  PubMed  Google Scholar 

  37. Y.-H. Cheng, Y. Fang, X. Zhao, L. Liu, and Q.-X. Guo. Bull. Chem. Soc. Jpn., 2002, 75, 1715. https://doi.org/10.1246/bcsj.75.1715

    Article  CAS  Google Scholar 

  38. F. Pichierri. Theor. Chem. Acc., 2017, 136, 114-123. https://doi.org/10.1007/s00214-017-2144-5

    Article  CAS  Google Scholar 

  39. G. S. Remya and C. H. Suresh. Phys. Chem. Chem. Phys., 2016, 18, 20615. https://doi.org/10.1039/C6CP02936A

    Article  CAS  PubMed  Google Scholar 

  40. H. Szatylowicz, A. Jezuita, T.Siodła, K. S. Varaksin, M. A. Domanski, K. Ejsmont, and T. M. Krygowski. ACS Omega, 2017, 2, 7163. https://doi.org/10.1021/acsomega.7b01043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. R. Ghiasi and A. Zamani. J. Chin. Chem. Soc., 2017, 64, 1340. https://doi.org/10.1002/jccs.201700172

    Article  CAS  Google Scholar 

  42. R. Ghiasi, H. Pasdar, and S. Fereidoni. Russ. J. Inorg. Chem., 2016, 61, 327. https://doi.org/10.1134/S0036023616030104

    Article  CAS  Google Scholar 

  43. R. Ghiasi and A. Heydarbeighi. Russ. J. Inorg. Chem., 2016, 61, 985. https://doi.org/10.1134/S0036023616080088

    Article  CAS  Google Scholar 

  44. R. Ghiasi, H. Pasdar, and F. Irajizadeh. J. Chil. Chem. Soc., 2015, 60, 2740. https://doi.org/10.4067/S0717-97072015000400020

    Article  CAS  Google Scholar 

  45. R. Ghiasi, S. Abdolmohammadi, and S. Moslemizadeh. J. Chin. Chem. Soc., 2015, 62, 898. https://doi.org/10.1002/jccs.201500249

    Article  CAS  Google Scholar 

  46. A. Peikari, R. Ghiasi, and H. Pasdar. Russ. J. Phys. Chem. A, 2015, 89, 250. https://doi.org/10.1134/S0036024415020260

    Article  Google Scholar 

  47. M. Z. Fashami, and R. Ghiasi. J. Struct. Chem., 2015, 56, 1474. https://doi.org/10.1134/S0022476615080041

    Article  CAS  Google Scholar 

  48. R. Ghiasi and A. Boshak. J. Mex. Chem. Soc., 2013, 57, 8. https://doi.org/10.29356/jmcs.v57i1.229

    Article  Google Scholar 

  49. H. Pasdar and R. Ghiasi. Main Group Chem., 2009, 8, 143. https://doi.org/10.1080/10241220902977653

    Article  CAS  Google Scholar 

  50. A. N. Egorochkin, O. V. Kuznetsova, N. M. Khamaletdinova, and L. G. Domratcheva-Lvova. Inorg. Chim. Acta, 2018, 471, 148. https://doi.org/10.1016/j.ica.2017.10.021

    Article  CAS  Google Scholar 

  51. H. Anane, S.E. Houssame, A. E. Guerraze, A. Guermoune, A. Boutalib, A. Jarid, I. Nebot-Gil, and F. Tomás. Cent. Eur. J. Chem., 2008, 6, 400. https://doi.org/10.2478/s11532-008-0029-0

    Article  CAS  Google Scholar 

  52. D. M. Denning and D. E. Falvey. J. Org. Chem., 2017, 82, 1552. https://doi.org/10.1021/acs.joc.6b02755

    Article  CAS  PubMed  Google Scholar 

  53. M. Wesolowski and T. Konarski. J. Therm. Anal. Calorim., 1999, 55, 995. https://doi.org/10.1023/A:1010162607157

    Article  CAS  Google Scholar 

  54. F. Jia, L.-P. Yang, D.-H. Li, and W. Jiang. J. Org. Chem., 2017, 82, 10444. https://doi.org/10.1021/acs.joc.7b01914

    Article  CAS  PubMed  Google Scholar 

  55. T. H. Lowry and K. S. Richardson. Mechanism and Theory in Organic Chemistry, 3d ed. Harper Collins: New York, 1987.

  56. S. Berson, S. Cecioni, M. Billon, Y. Kervella, R. Bettignies, S. Bailly, and S. Guillerez. Sol. Energy Mater. Sol. Cells, 2010, 94, 699. https://doi.org/10.1016/j.solmat.2009.12.028

    Article  CAS  Google Scholar 

  57. M. A. Solomos, T. A. Watts, and J. A. Swift. Cryst. Growth Des., 2017, 17, 5065. https://doi.org/10.1021/acs.cgd.7b00757

    Article  CAS  Google Scholar 

  58. J. Ohshita, K. Hiroyuki, A. Takata, I. Toshiyuki, A. Kunai, N. Nhta, K. Komaguchi, M. Shiotani, A. Adachi,K. Sakamaki, and K. Okita. Organometallics, 2001, 20, 4800. https://doi.org/10.1021/om0103254

    Article  CAS  Google Scholar 

  59. S. Abou-Hatab, V.A. Spata, and S. Matsika. J. Phys. Chem. A, 2017, 121, 1213. https://doi.org/10.1021/acs.jpca.6b12031

    Article  CAS  PubMed  Google Scholar 

  60. J. Jung, J. Jo, and A. Dinescu. Org. Process Res. Dev., 2017, 21, 1689. https://doi.org/10.1021/acs.oprd.7b00269

    Article  CAS  Google Scholar 

  61. C.-T. Cao, L.-Y. Wang, and C.-Z. Cao. Chin. J. Chem. Phys., 2018, 31, 45. https://doi.org/10.1063/1674-0068/31/cjcp1704077

    Article  CAS  Google Scholar 

  62. C. R. Caiser, E. A. Basso, and R. Rittner. Magn. Reson. Chem., 2001, 39, 643. https://doi.org/10.1002/mrc.875

    Article  CAS  Google Scholar 

  63. K. A. Manbeck, N. C. Boaz, N. C. Bair, A. M. S. Sanders, and A. L. Marsh. J. Chem. Educ., 2011, 88, 1444. https://doi.org/10.1021/ed1010932

    Article  CAS  Google Scholar 

  64. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone,B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma,V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman,J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision A.02. Gaussian: Wallingford CT, 2009.

  65. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople. J. Chem. Phys., 1980, 72, 650. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  66. A. D. McLean and G. S. Chandler. J. Chem. Phys., 1980, 72, 5639. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  67. Y. Zhao, and D. G. Truhla. J. Phys. Chem. A, 2006, 110, 5121. https://doi.org/10.1021/jp060231d

    Article  CAS  PubMed  Google Scholar 

  68. A. E. Reed, L. A. Curtiss, and F. Weinhold. Chem. Rev., 1988, 88, 899. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  69. E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold. NBO Version 3.1. Madison, 1988.

  70. K. Morokuma. J. Chem. Phys., 1971, 55, 1236. https://doi.org/10.1063/1.1675562

    Article  CAS  Google Scholar 

  71. T. Ziegler and A. Rauk. Theor. Chim. Acta, 1977, 46, 1. https://doi.org/10.1007/BF02401406

    Article  CAS  Google Scholar 

  72. F. M. Bickelhaupt, and E. J. Baerends. Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry. In: Reviews in Computational Chemistry / Eds. K. B. Lipkowitz and D. B. Boyd. John Wiley & Sons: Weinheim, 2000, Vol. 15.

  73. T. Lu and F. Chen. J. Comput. Chem., 2012, 33, 580. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  74. T. Lu and F. Chen. J. Mol. Graphics Modell., 2012, 38, 314. https://doi.org/10.1016/j.jmgm.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  75. C. R. Zhang, H. S. Chen, and G. H. Wang. Chem. Res. Chin. Univ., 2004, 20, 640.

  76. H. Cheng, J. Feng, A. Ren, and J. Liu. Acta Chim. Sin., 2002, 60, 830.

  77. Y. Sun, X. Chen, L. Sun, X. Guo, and W. Lu. Chem. Phys. Lett., 2003, 381, 397. https://doi.org/10.1016/j.cplett.2003.09.115

    Article  CAS  Google Scholar 

  78. P. K. Chattaraj and S. Sengupta. J. Phys. Chem., 1996, 100, 16126. https://doi.org/10.1021/jp961096f

    Article  CAS  Google Scholar 

  79. T. K. Ghanty and S. K. Ghosh. J. Phys. Chem., 1996, 100, 12295. https://doi.org/10.1021/jp960276m

    Article  CAS  Google Scholar 

  80. P. K. Chattaraj, P. Fuentealba, B. Gomez, and R. Contreras. J. Am. Chem. Soc., 2000, 122, 348. https://doi.org/10.1021/ja992337a

    Article  CAS  Google Scholar 

  81. P. K. Chattaraj, D. R. Roy, and S. Giri. Comput. Lett., 2007, 3, 223. https://doi.org/10.1163/157404007782913336

    Article  CAS  Google Scholar 

  82. R. G. Pearson. Chemical Hardness. Wiley-VCH: Oxford, 1997. https://doi.org/10.1002/3527606173

  83. R. G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules. Oxford University Press: New York, 1989.

  84. R. G. Parr, L. v. Szentpály, and S. Liu. J. Am. Chem. Soc., 1999, 121, 1922. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  85. P. W. Ayers and R. G. Parr. J. Am. Chem. Soc., 2000, 422, 2010. https://doi.org/10.1021/ja9924039

    Article  CAS  Google Scholar 

  86. R. G. Parr and P. K. Chattaraj. J. Am. Chem. Soc., 1991, 113, 1854. https://doi.org/10.1021/ja00005a072

    Article  CAS  Google Scholar 

  87. R. G. Pearson. J. Chem. Educ., 1987, 64, 561. https://doi.org/10.1021/ed064p561

    Article  CAS  Google Scholar 

  88. R. G. Pearson. Acc. Chem. Res., 1993, 26, 250. https://doi.org/10.1021/ar00029a004

    Article  CAS  Google Scholar 

  89. R. G. Pearson. J. Chem. Educ., 1999, 76, 267. https://doi.org/10.1021/ed076p267

    Article  CAS  Google Scholar 

  90. E. Chamorro, P. K. Chattaraj, and P. Fuentealba. J. Phys. Chem. A, 2003, 107, 7068. https://doi.org/10.1021/jp035435y

    Article  CAS  PubMed  Google Scholar 

  91. R. Parthasarathi, M. Elango, V. Subramanian, and P. K. Chattaraj. Theor. Chem. Acc., 2005, 113, 257. https://doi.org/10.1007/s00214-005-0634-3

    Article  CAS  Google Scholar 

  92. J. Padmanabhan, R. Parthasarathi, V. Subramanian, and P. K. Chattaraj. J. Phys. Chem. A, 2007, 111, 1358. https://doi.org/10.1021/jp0649549

    Article  CAS  PubMed  Google Scholar 

  93. R. G. Pearson. J. Org. Chem., 1989, 54, 1430. https://doi.org/10.1021/jo00267a034

    Article  CAS  Google Scholar 

  94. R. G. Parr and R. G. Pearson. J. Am. Chem. Soc., 1983, 105, 7512. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  95. K. B. Wiberg. Tetrahedron, 1968, 24, 1083. https://doi.org/10.1016/0040-4020(68)88057-3

    Article  CAS  Google Scholar 

  96. A. Moyano, M. A. Pericas, and E. Valenti. J. Org. Chem., 199, 54, 573. https://doi.org/10.1021/jo00264a014

    Article  CAS  Google Scholar 

  97. M. Manoharan and P. Venuvanalingam. J. Mol. Struct.: THEOCHEM, 1997, 394, 41. https://doi.org/10.1016/S0166-1280(96)04899-3

    Article  CAS  Google Scholar 

  98. M. Manoharan and P. Venuvanalingam. J. Chem. Soc., Perkin Trans., 1997, 1799. https://doi.org/10.1039/a700250e

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ghiasi.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 10, pp. 1656-1666.https://doi.org/10.26902/JSC_id80799

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahraminejad, M., Ghiasi, R., Mohtat, B. et al. SUBSTITUENT EFFECT IN [2+4] DIELS–ALDER CYCLOADDITION REACTIONS OF ANTHRACENE WITH C2X2 (X = H, F, Cl, Me): A COMPUTATIONAL INVESTIGATION. J Struct Chem 62, 1551–1562 (2021). https://doi.org/10.1134/S0022476621100097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621100097

Keywords

Navigation