Skip to main content
Log in

DFT STUDY OF THE STRUCTURE, CONFORMATIONAL PROFILE AND THE VIBRATIONAL ANALYSIS OF 2-FURANCARBOTHIALDEHYDE AND 3-FURANCARBOTHIALDEHYDE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The aim of this work is to study theoretically the geometrical structure, conformational preference, and vibrational properties of rotational isomers of 2- and 3-furancarbothialdehyde. The B3YLP hybrid density functional with the standard 6-311++G basis set is used to carry out all the calculations. The potential energy profile is calculated to determine the more stable conformer. The energy differences between cis and trans conformers show that the trans conformers are the preferred conformers with 0.70 kcal/mol and 1.36 kcal/mol for both 2-furancarbothialdehyde and 3-furancarbothialdehyde respectively. Nine different solvents with the polarity ranging from ε = 1.92 to ε = 78.39 are used to study the effect of solvation on the conformational stability of the two molecules using the integral equation formalism in the polarizable continuum model (IEF-PCM). The trans conformers are found to be more stable than the cis conformers in the gas phase. For 3-furancarbothialdehyde, the stability of the cis conformer increases as the dielectric constant of the solvent increases. On the other hand, the solvent reverses the conformational stability of 2-furancarbothialdehyde. The cis conformer becomes less stable as the dielectric constant of the solvent increases. The simulated infrared spectra of the molecules, geometrical parameters, and assignments of the vibrational modes are reported. Variations of the relative energy, dipole moment, and solvation energies as a function of the dielectric constant of solvents are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. P. F. Bruins. PhD Thesis. Iowa State College, 1930.

  2. Z. Zeng, G. Zhao, P. Gao, H. Tang, B. Chen, Z. Zhou, and C. Tang. Catal. Commun., 2007, 8, 1443. https://doi.org/10.1016/j.catcom.2006.12.016

    Article  CAS  Google Scholar 

  3. H. Ashish and P. Ramasami. Mol. Phys., 2008, 106, 175. https://doi.org/10.1080/00268970701881196

    Article  CAS  Google Scholar 

  4. N. Kumar, S. Chakravorti, and P. Chowdhury. J. Mol. Struct., 2008, 891, 351. https://doi.org/10.1016/j.molstruc.2008.04.013

    Article  CAS  Google Scholar 

  5. A. Saha, H. P. Upadhyaya, A. Kumar, P. D. Naik, and P. N. Bajaj. Chem. Phys., 2012, 402, 74. https://doi.org/10.1016/j.chemphys.2012.04.009

    Article  CAS  Google Scholar 

  6. J. D. Magdaline and T. Chithambarathanu. Int. J. ChemTech Res., 2015, 8(1), 362.

  7. K. Hagen. J. Mol. Struct., 1985, 130, 255. https://doi.org/10.1016/0022-2860(85)87007-1

    Article  CAS  Google Scholar 

  8. Y. Umar and S. Abdalla. J. Solution Chem., 2017, 46,741. https://doi.org/10.1007/s10953-017-0601-3

    Article  CAS  Google Scholar 

  9. Y. Umar, J. Tijani, and S. Abdalla. J. Struct. Chem., 2016, 57(8), 1545. https://doi.org/10.1134/S0022476616080084

    Article  CAS  Google Scholar 

  10. Y. Umar, J. Tijani, and S. Abdalla. J. Struct. Chem., 2019, 60(2), 199. https://doi.org/10.1134/S0022476619020033

    Article  CAS  Google Scholar 

  11. Y. Umar and J. Tijani. J. Struct. Chem, 2015, 56(7), 1369. https://doi.org/10.1134/S0022476615070112

    Article  CAS  Google Scholar 

  12. J. Tomasi, B. Mennucci, and R. Cammi. Chem. Rev., 2005, 105, 2999. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  13. J. Tomasi and M. Persico. Chem. Rev., 1994, 94, 2027. https://doi.org/10.1021/cr00031a013

    Article  CAS  Google Scholar 

  14. E. Cances, B. Mennucci, and J. Tomasi. J. Chem. Phys., 1997, 107, 3032. https://doi.org/10.1063/1.474659

    Article  Google Scholar 

  15. E. Cances, B. Mennucci, and J. Tomasi. J. Phys. Chem. B, 1997, 101, 10506. https://doi.org/10.1021/jp971959k

    Article  CAS  Google Scholar 

  16. S. Miertus, E. Scrocco, and J. Tomasi. Chem. Phys., 1981, 55, 117. https://doi.org/10.1016/0301-0104(81)85090-2

    Article  Google Scholar 

  17. R. Cammi and J. Tomasi. J. Comput. Chem., 1995, 16, 1449. https://doi.org/10.1002/jcc.540161202

    Article  CAS  Google Scholar 

  18. E. Canc and B. Mennucci. J. Math. Chem., 1998, 23, 309. https://doi.org/10.1023/A:1019133611148

    Article  Google Scholar 

  19. Gaussian09, Revision A.02. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin,K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian, Inc.: Wallingford CT, 2016.

  20. A .D. Becke. J. Chem. Phys., 1993, 78, 5648.

  21. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 7853.

  22. S. F. Soua, P. A. Fernandes, and M. J. Ramos. J. Phys. Chem. A, 2007, 111, 10439. https://doi.org/10.1021/jp0734474

    Article  CAS  PubMed  Google Scholar 

  23. M. H. Jamroz. Vibrational Energy Distribution Analysis: VEDA 4 Program. Warsaw, 2004.

  24. G. Alagona, C. E. Ghio, and P. I. Nagy. Int. J. Quantum Chem., 2004, 99, 161-178. https://doi.org/10.1002/qua.20117

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Umar.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 10, pp. 1591-1603.https://doi.org/10.26902/JSC_id80807

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Abdalla, S., Ishaq, A. et al. DFT STUDY OF THE STRUCTURE, CONFORMATIONAL PROFILE AND THE VIBRATIONAL ANALYSIS OF 2-FURANCARBOTHIALDEHYDE AND 3-FURANCARBOTHIALDEHYDE. J Struct Chem 62, 1485–1497 (2021). https://doi.org/10.1134/S0022476621100012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621100012

Keywords

Navigation