Skip to main content
Log in

SYNTHESIS AND CRYSTAL STRUCTURE OF [LRe(CO)3(O2CC3F7)]

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

This work reports the synthesis and structural characterization of two heteroleptic complexes based on a stable {Re(CO)3}+ group. At the first stage, complexes with diimine ligands [LRe(CO)3Br] (L = 2,2’-bipyridine, bpy; 1,10-phenanthroline, phen) are obtained from [Re(CO)5Br]. At the second stage, their treatment with silver perfluorobutyrate leads to the formation of [LRe(CO)3(O2CC3F7)]. Both complexes are structurally characterized, their IR and luminescence spectra are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3.
Fig. 4
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. K. Kalyanasundaram. J. Chem. Soc., Faraday Trans. 2, 1986, 82, 2401. https://doi.org/10.1039/f29868202401

    Article  CAS  Google Scholar 

  2. S. Sato, Y. Matubara, K. Koike, M. Falkenström, T. Katayama, Y. Ishibashi, H. Miyasaka, S. Taniguchi, H. Chosrowjan, N. Mataga, N. Fukazawa, S. Koshihara, K. Onda, and O. Ishitani. Chem. – Eur. J., 2012, 18, 15722–15734. https://doi.org/10.1002/chem.201202734

    Article  CAS  PubMed  Google Scholar 

  3. M. Wrighton and L. David. J. Am. Chem. Soc., 1974, 96, 998–1003. https://doi.org/10.1021/ja00811a008

    Article  CAS  Google Scholar 

  4. K. Koike, N. Okoshi, H. Hori, K. Takeuchi, O. Ishitani, H. Tsubaki, I. P. Clark, M. W. George, F. P. A. Johnson, andJ. J. Turner. J. Am. Chem. Soc., 2002, 124, 11448–11455. https://doi.org/10.1021/ja017032m

    Article  CAS  PubMed  Google Scholar 

  5. M. D. Doherty, D. C. Grills, and E. Fujita. Inorg. Chem., 2009, 48, 1796–1798. https://doi.org/10.1021/ic8019556

    Article  CAS  PubMed  Google Scholar 

  6. M. Chergui. Acc. Chem. Res., 2015, 48, 801–808. https://doi.org/10.1021/ar500358q

    Article  CAS  PubMed  Google Scholar 

  7. L. M. Kiefer, J. T. King, and K. J. Kubarych. Acc. Chem. Res., 2015, 48, 1123–1130. https://doi.org/10.1021/ar500402r

    Article  CAS  PubMed  Google Scholar 

  8. A. Vlček, H. Kvapilová, M. Towrie, and S. Záliš. Acc. Chem. Res., 2015, 48, 868–876. https://doi.org/10.1021/ar5004048

    Article  CAS  PubMed  Google Scholar 

  9. J. Hawecker, J.-M. Lehn, and R. Ziessel. Helv. Chim. Acta, 1986, 69, 1990–2012. https://doi.org/10.1002/hlca.19860690824

    Article  CAS  Google Scholar 

  10. J. Hawecker, J.-M. Lehn, and R. Ziessel. J. Chem. Soc., Chem. Commun., 1983, 536–538. https://doi.org/10.1039/C39830000536

    Article  Google Scholar 

  11. T. W. Schneider, M. Z. Ertem, J. T. Muckerman, and A. M. Angeles-Boza. ACS Catal., 2016, 6, 5473–5481. https://doi.org/10.1021/acscatal.6b01208

    Article  CAS  Google Scholar 

  12. L. A. Paul, N. C. Röttcher, J. Zimara, J.-H. Borter, J.-P. Du, D. Schwarzer, R. A. Mata, and I. Siewert. Organometallics, 2020, 39, 2405–2414. https://doi.org/10.1021/acs.organomet.0c00240

    Article  CAS  Google Scholar 

  13. H. A. Petersen, T. H. T. Myren, and O. R. Luca. Inorganics, 2020, 8, 62. https://doi.org/10.3390/inorganics8110062

    Article  CAS  Google Scholar 

  14. P. Gerschel, A. L. Cordes, S. Bimmermann, D. Siegmund, N. Metzler-Nolte, and U. Apfel. Z. Anorg. Allg. Chem., 2021, 647, 968–977. https://doi.org/10.1002/zaac.202000450

    Article  CAS  Google Scholar 

  15. M. Waki, M. Ikai, Y. Goto, Y. Maegawa, and S. Inagaki. Eur. J. Inorg. Chem., 2021, 2021, 1624. https://doi.org/10.1002/ejic.202100076

    Article  CAS  Google Scholar 

  16. P. Gotico, T. Tran, A. Baron, B. Vauzeilles, C. Lefumeux, M. Ha-Thi, T. Pino, Z. Halime, A. Quaranta, W. Leibl, andA. Aukauloo. ChemPhotoChem, 2021, in print. https://doi.org/10.1002/cptc.202100010

    Article  CAS  Google Scholar 

  17. M. L. Clark, P. L. Cheung, M. Lessio, E. A. Carter, and C. P. Kubiak. ACS Catal., 2018, 8, 2021–2029. https://doi.org/10.1021/acscatal.7b03971

    Article  CAS  Google Scholar 

  18. Y. M. Gayfulin, K. A. Brylev, M. R. Ryzhikov, D. G. Samsonenko, N. Kitamura, and Y. V. Mironov. Dalton Trans., 2019, 48, 12522–12530. https://doi.org/10.1039/C9DT02352F

    Article  CAS  PubMed  Google Scholar 

  19. A. A. Ulantikov, Y. M. Gayfulin, A. A. Ivanov, T. S. Sukhikh, M. R. Ryzhikov, K. A. Brylev, A. I. Smolentsev,M. A. Shestopalov, and Y. V. Mironov. Inorg. Chem., 2020, 59, 6460–6470. https://doi.org/10.1021/acs.inorgchem.0c00546

    Article  CAS  PubMed  Google Scholar 

  20. Y. M. Litvinova, Y. M. Gayfulin, K. A. Kovalenko, D. G. Samsonenko, J. van Leusen, I. V. Korolkov, V. P. Fedin, andY. V. Mironov. Inorg. Chem., 2018, 57, 2072–2084. https://doi.org/10.1021/acs.inorgchem.7b02974

    Article  CAS  PubMed  Google Scholar 

  21. P. A. Petrov, T. S. Sukhikh, V. A. Nadolinny, M. A. Mikhaylov, A. N. Lavrov, A. A. Dmitriev, N. P. Gritsan, andM. N. Sokolov. Inorg. Chem., 2021, 60, 6746–6752. https://doi.org/10.1021/acs.inorgchem.1c00568

    Article  CAS  PubMed  Google Scholar 

  22. A. A. Ivanov, C. Falaise, P. A. Abramov, M. A. Shestopalov, K. Kirakci, K. Lang, M. A. Moussawi, M. N. Sokolov, N. G. Naumov, S. Floquet, D. Landy, M. Haouas, K. A. Brylev, Y. V. Mironov, Y. Molard, S. Cordier, and E. Cadot. Chem. – Eur. J., 2018, 24, 13467–13478. https://doi.org/10.1002/chem.201802102

    Article  CAS  PubMed  Google Scholar 

  23. A. V. Anyushin, P. A. Abramov, and M. N. Sokolov. Russ. J. Coord. Chem., 2019, 45, 548–554. https://doi.org/10.1134/S1070328419080013

    Article  CAS  Google Scholar 

  24. P. A. Abramov, A. A. Dmitriev, K. V. Kholin, N. P. Gritsan, M. K. Kadirov, A. L. Gushchin, and M. N. Sokolov. Electrochim. Acta, 2018, 270, 526–534. https://doi.org/10.1016/j.electacta.2018.03.111

    Article  CAS  Google Scholar 

  25. V. S. Sergienko and A. V. Churakov. Russ. J. Inorg. Chem., 2019, 64, 1803–1818. https://doi.org/10.1134/S0036023619140055

    Article  CAS  Google Scholar 

  26. V. S. Sergienko. Russ. J. Inorg. Chem., 2019, 64, 1127–1131. https://doi.org/10.1134/S0036023619090183

    Article  CAS  Google Scholar 

  27. I. V. Skabitskii, S. G. Sakharov, A. A. Pasynskii, and R. S. Eshmakov. Russ. J. Coord. Chem., 2019, 45, 539–547. https://doi.org/10.1134/S1070328419080086

    Article  CAS  Google Scholar 

  28. V. S. Sergienko. Russ. J. Coord. Chem., 2019, 45, 439–445. https://doi.org/10.1134/S1070328419060071

    Article  CAS  Google Scholar 

  29. V. S. Sergienko. Russ. J. Inorg. Chem., 2019, 64, 317–322. https://doi.org/10.1134/S0036023619030185

    Article  CAS  Google Scholar 

  30. V. W.-W. Yam, V. K.-M. Au, and S. Y.-L. Leung. Chem. Rev., 2015, 115, 7589–7728. https://doi.org/10.1021/acs.chemrev.5b00074

    Article  CAS  PubMed  Google Scholar 

  31. V. W.-W. Yam, K. K.-W. Lo, K.-K. Cheung, and R. Y.-C. Kong. J. Chem. Soc., Chem. Commun., 1995, 1191. https://doi.org/10.1039/C39950001191

    Article  Google Scholar 

  32. C.-C. Ko, W.-M. Kwok, V. W.-W. Yam, D. L. Phillips. Chem. – Eur. J., 2006, 12, 5840–5848. https://doi.org/10.1002/chem.2005013 and 25

  33. C.-C. Ko and V. W.-W. Yam. Acc. Chem. Res., 2018, 51, 149–159. https://doi.org/10.1021/acs.accounts.7b00426

    Article  CAS  PubMed  Google Scholar 

  34. K. S. Kisel, A. S. Melnikov, E. V. Grachova, A. J. Karttunen, A. Doménech-Carbó, K. Y. Monakhov, V. G. Semenov, S. P. Tunik, and I. O. Koshevoy. Inorg. Chem., 2019, 58, 1988–2000. https://doi.org/10.1021/acs.inorgchem.8b02974

    Article  CAS  PubMed  Google Scholar 

  35. K. S. Kisel, T. Eskelinen, W. Zafar, A. I. Solomatina, P. Hirva, E. V. Grachova, S. P. Tunik, and I. O. Koshevoy. Inorg. Chem., 2018, 57, 6349–6361. https://doi.org/10.1021/acs.inorgchem.8b00422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. K. S. Kisel, A. S. Melnikov, E. V. Grachova, P. Hirva, S. P. Tunik, and I. O. Koshevoy. Chem. – Eur. J., 2017, 23, 11301–11311. https://doi.org/10.1002/chem.201701539

    Article  CAS  PubMed  Google Scholar 

  37. T. Auvray, M.-P. Santoni, B. Hasenknopf, and G. S. Hanan. Dalton Trans., 2017, 46, 10029–10036. https://doi.org/10.1039/C7DT01674C

    Article  CAS  PubMed  Google Scholar 

  38. C. Zhao, C. S. Kambara, Y. Yang, A. L. Kaledin, D. G. Musaev, T. Lian, and C. L. Hill. Inorg. Chem., 2013, 52, 671–678. https://doi.org/10.1021/ic301766b

    Article  CAS  PubMed  Google Scholar 

  39. T. Nagata, M. Pohl, H. Weiner, and R. G. Finke. Inorg. Chem., 1997, 36, 1366–1377. https://doi.org/10.1021/ic960910a

    Article  CAS  PubMed  Google Scholar 

  40. J. Lu, P. He, J. Niu, and J. Wang. Inorg. Chem. Front., 2019, 6, 3041–3056. https://doi.org/10.1039/C9QI00832B

    Article  CAS  Google Scholar 

  41. M. N. Sokolov, M. A. Mihailov, E. V. Peresypkina, K. A. Brylev, N. Kitamura, and V. P. Fedin. Dalton Trans., 2011, 40, 6375. https://doi.org/10.1039/c1dt10376h

    Article  CAS  PubMed  Google Scholar 

  42. K. Kirakci, P. Kubát, M. Dušek, K. Fejfarová, V. Šícha, J. Mosinger, and K. Lang. Eur. J. Inorg. Chem., 2012, 2012, 3107–3111. https://doi.org/10.1002/ejic.201200402

    Article  CAS  Google Scholar 

  43. P. A. Abramov, K. A. Brylev, A. Y. Vorobev, Y. V. Gatilov, G. I. Borodkin, N. Kitamura, and M. N. Sokolov. Polyhedron, 2017, 137, 231–237. https://doi.org/10.1016/j.poly.2017.08.046

    Article  CAS  Google Scholar 

  44. J. M. Smieja and C. P. Kubiak. Inorg. Chem., 2010, 49, 9283–9289. https://doi.org/10.1021/ic1008363

    Article  CAS  PubMed  Google Scholar 

  45. G. M. Sheldrick. SADABS Program for Scaling and Correction of Area Detector Data. University of Göttingen: Göttingen, Germany, 1996.

  46. G. M. Sheldrick. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3–8. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  47. G. M. Sheldrick. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3–8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  48. C. B. Hübschle, G. M. Sheldrick, and B. Dittrich. J. Appl. Crystallogr., 2011, 44, 1281–1284. https://doi.org/10.1107/S0021889811043202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Abramov.

Ethics declarations

The author declares that he has no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 9, pp. 1513-1521.https://doi.org/10.26902/JSC_id79933

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramov, P.A. SYNTHESIS AND CRYSTAL STRUCTURE OF [LRe(CO)3(O2CC3F7)]. J Struct Chem 62, 1416–1424 (2021). https://doi.org/10.1134/S0022476621090109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621090109

Keywords

Navigation