Skip to main content
Log in

INVESTIGATION ON THE FLUORESCENT PROPERTY AND THE HIRSHFELD SURFACE ANALYSIS OF A NOVEL HETEROBIMETALLIC Cd(II)—Na(I) PYRIDINE-TERMINAL SALAMO-TYPE COORDINATION POLYMER

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A novel heterometallic Cd(II)–Na(I) coordination polymer (Cd(II)–Na(I) CP), [{Cd(H2L)(OAc)(μ2-OAc)Na(OAc)(MeOH)(EtOH)}2]n is self-assembled via a reaction between Cd(OAc)2·H2O, NaN(CN)2, and a salamo-type ligand H2L containing terminal pyridine. It is structurally characterized. There are two kinds of metal atoms with different coordination modes. The N2O2 cavity of H2L is not involved in coordination, while the terminal pyridine nitrogen atoms are linked to Cd(II) atoms. Two kinds of acetate groups (OAc and μ2-OAc) are coordinated with Cd(II) atoms in different coordination modes; two identical Cd(II) atoms are bridged by oxygen atoms of μ2-OAc groups. The Na(I) atoms are linked to Cd(II) atoms via one oxygen atom of μ2-OAc; one acetate group (OAc), one undeprotonated methanol and ethanol molecules are also coordinated with Na(I) atoms. With Cd(II) atoms as the node and the undeprotonated H2L ligand molecule as the linker, a coordination polymer with a larger pore size (25.04·17.66(2) Å2) is formed. Cd(II)–Na(I) CP can emit brighter green fluorescence, hence, it can be applied to the development of fluorescent materials. Various short-range interactions on the Cd(II)–Na(I) CP surface are studied by the Hirshfeld surface analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. T. Schafer, A.E. Sedykh, J. Becker, and K. M. Buschbaum. Z. Anorg. Allg. Chem., 2020, 646, 1555–1562. https://doi.org/10.1002/zaac.202000103

    Article  CAS  Google Scholar 

  2. J. G. Duan, Y. Li, Y. Pan, N. Behera, and W. Jin. Coord. Chem. Rev., 2019, 395, 25–45. https://doi.org/10.1016/j.ccr.2019.05.018

    Article  CAS  Google Scholar 

  3. J. W. Zhang, C. R. Wang, W. H. Liu, S. Xu, and B. Q. Liu, Inorg. Chim. Acta, 2020, 508, 119648. https://doi.org/10.1016/j.ica.2020.119648

    Article  CAS  Google Scholar 

  4. J. G. Duan, M. Higuchi, J. Zheng, S. I. Noro, and I. Y. Chang. J. Am. Chem. Soc., 2017, 139, 11576–11583. https://doi.org/10.1021/jacs.7b05702

    Article  CAS  PubMed  Google Scholar 

  5. H. Cao, S. Wang, Y. Wang, H. Lyu, R. Krishna, Z. Lu, J. G. Duan, and W. Jin. CrystEngComm, 2017, 19, 6927–6931. https://doi.org/10.1039/C7CE01649B

    Article  CAS  Google Scholar 

  6. Q. Dong, Y. Guo, H. Cao, S. Wang, R. Matsuda, and J. G. Duan. ACS Appl. Mater. Interfaces, 2020, 12, 3764–3772. https://doi.org/10.1021/acsami.9b20623

    Article  CAS  PubMed  Google Scholar 

  7. P. Li, W. Liu, S.D. John, and H. C. Zeng. ACS Appl. Mater. Interfaces, 2017, 9, 9592–9602. https://doi.org/10.1021/acsami.6b14960

    Article  CAS  PubMed  Google Scholar 

  8. H. Takahiro, K. Atsushi, O. Hiroki, Y. Masaki, M. Takeshi, H. C. Chang, and K. Masako. Inorg. Chem., 2015, 54, 8905–8913. https://doi.org/10.1021/acs.inorgchem.5b00578

    Article  CAS  PubMed  Google Scholar 

  9. G. P. Gao, F. Zheng, and L. W. Wang. Chem. Mater., 2020, 32, 1974–1982. https://doi.org/10.1021/acs.chemmater.9b04852

    Article  CAS  Google Scholar 

  10. J. J. Liu, Y. W. Lu, J. Li, and W. B. Lu. Dyes Pigm., 2020, 177, 108266. https://doi.org/10.1016/j.dyepig.2020.108266

    Article  CAS  Google Scholar 

  11. N. Ma, C. Lin, N. Wu, Q. Liu, J. L. Ma, W. Meng, X. S. Wang, L. Zhang, X. H. Xu, Y. F. Zhao, L. Zhuang, J. Fan,J. L. Sun, R. X. Zhuo, and X. Z. Zhang. J. Mater. Chem. A, 2017, 5, 23440–23445. https://doi.org/10.1039/C7TA08002F

    Article  CAS  Google Scholar 

  12. A. B. Stephanie and R. T. David. Cryst. Growth Des., 2016, 16, 6294–6303. https://doi.org/10.1021/acs.cgd.6b00901

    Article  CAS  Google Scholar 

  13. J. Q. Dong, C. X. Tan, K. Zhang, Y. Liu, J. Paul, J. W. Jiang, and Y. Cui. J. Am. Chem. Soc., 2017, 139, 1554–1564. https://doi.org/10.1021/jacs.6b11422

    Article  CAS  PubMed  Google Scholar 

  14. L. L. Wang, J. M. Wang, C. B. Fan, C. B. Bi, X. D. Zhang, M. Zhang, M. Wang, and Y. H. Fan. Appl. Organomet. Chem., 2020, 34, e5767. https://doi.org/10.1002/aoc.5767

    Article  Google Scholar 

  15. J. Tong, L. M. Jia, P. Shang, and S. Y. Yu. Cryst. Growth Des., 2019, 19, 30–39. https://doi.org/10.1021/acs.cgd.8b01406

    Article  CAS  Google Scholar 

  16. V. A. Milway, F. Tuna, A. R. Farrell, L. E. Sharp, S. Parsons, and M. Murrie. Angew. Chem. Int. Ed., 2013, 52, 1949–1952. https://doi.org/10.1002/anie.201208781

    Article  CAS  Google Scholar 

  17. C. Y. Tang, W. Zheng, W. Q. Jiang, and D. X. Jia. Inorg. Chem. Commun., 2019, 104, 23–26. https://doi.org/10.1016/j.inoche.2019.03.026

    Article  CAS  Google Scholar 

  18. D. Aguilà, V. Velasco, L. A. Barrios, J. González-Fabra, C. Bo, S. J. Teat, O. Roubeau, and G. Aromí. Inorg. Chem., 2018, 57, 8429–8439. https://doi.org/10.1021/acs.inorgchem.8b01112

    Article  CAS  PubMed  Google Scholar 

  19. A. Chakraborty, J. Goura, P. Bag, and V. Chandrasekhar. Eur. J. Inorg. Chem., 2019, 9, 1180–1200. https://doi.org/10.1002/ejic.201801428

    Article  CAS  Google Scholar 

  20. T. Nakamura, S. Tsukuda, and T. Nabeshima. J. Am. Chem. Soc., 2019, 141, 6462–6467. https://doi.org/10.1021/jacs.9b00171

    Article  CAS  PubMed  Google Scholar 

  21. Y. Sakata, S. Chiba, M. Miyashita, T. Nabeshima, and S. Akine. Chem. Eur. J., 2019, 25, 2962–2966. https://doi.org/10.1002/chem.201805799

    Article  CAS  PubMed  Google Scholar 

  22. C. H. Ryu, S. W. Kwak, H. Lee, H. W. Lee, J. H. Hwang, H. M. Kim, Y. Chung, Y. M. Kim, M. H. Park, and K. M. Lee. Inorg. Chem., 2019, 58, 12358–12364. https://doi.org/10.1021/acs.inorgchem.9b01948

    Article  CAS  PubMed  Google Scholar 

  23. S. Akine, Z. Varadi, and T. Nabeshima. Eur. J. Inorg. Chem., 2013, 35, 5987–5998. https://doi.org/10.1002/ejic.201300917

    Article  CAS  Google Scholar 

  24. Y. Q. Pan, Y. Zhang, M. Yu, Y. Zhang, and L. Wang. Appl. Organomet. Chem., 2020, 34, e5441. https://doi.org/10.1002/aoc.5441

    Article  Google Scholar 

  25. T. Feng, L. L. Li, Y. J. Li, and W. K. Dong. Acta Crystallogr., Sect. B, 2021, 77, 168–181. https://doi.org/10.1107/S2052520620016157

    Article  CAS  Google Scholar 

  26. X. Xu, T. Feng, S. S. Feng, and W. K. Dong. Appl. Organomet. Chem., 2021, 35, e6057. https://doi.org/10.1002/aoc.6057

    Article  Google Scholar 

  27. Y. D. Peng, R. Y. Li, P. Li, and Y. X. Sun. Crystals, 2021, 11, 113–117. https://doi.org/10.3390/cryst11020113

    Article  CAS  Google Scholar 

  28. Y. F. Cui, C. Liu, Y. Zhang, and Y. Zhang. Inorg. Nano-Met. Chem., 2021, 51, 288–295. https://doi.org/10.1080/24701556.2020.1776735

    Article  CAS  Google Scholar 

  29. Y. D. Peng, Y. Zhang, Y. L. Jiang, Z. L. Ren, F. Wang, and L. Wang. J. Fluoresc., 2020, 30, 1049–1061. https://doi.org/10.1007/s10895-020-02579-y

    Article  CAS  PubMed  Google Scholar 

  30. R. N. Bian, J. F. Wang, X. Xu, X. Y. Dong, and Y. J. Ding. Appl. Organomet. Chem., 2021, 35, e6040. https://doi.org/10.1002/aoc.6040

    Article  Google Scholar 

  31. Y. J. Li, S. Z. Guo, T. Feng, K. F. Xie, and W. K. Dong. J. Mol. Struct., 2021, 1228, 129796. https://doi.org/10.1016/j.molstruc.2020.129796

    Article  CAS  Google Scholar 

  32. P. Li, G. X. Yao, M. Li, and W. K. Dong. Polyhedron, 2021, 195, 114981. https://doi.org/10.1016/j.poly.2020.114981

    Article  CAS  Google Scholar 

  33. C. Liu, X. X. An, Y. F. Cui, K. F. Xie, and W. K. Dong. Appl. Organomet. Chem., 2020, 34, e5272. https://doi.org/10.1002/aoc.5272

    Article  Google Scholar 

  34. Y. Zhang, M. Yu, Y. Q. Pan, Y. Zhang, L. Xu, and X. Y. Dong. Appl. Organomet. Chem., 2020, 34, e5442. https://doi.org/10.1002/aoc.5442

    Article  Google Scholar 

  35. L. Wang, Y. Q. Pan, J. F. Wang, Y. Zhang, and Y. J. Ding. J. Photochem. Photobiol., A, 2020, 400, 112719. https://doi.org/10.1016/j.jphotochem.2020.112719

    Article  CAS  Google Scholar 

  36. Q. P. Kang, X. Y. Li, L. Wang, Y. Zhang, and W. K. Dong. Appl. Organomet. Chem., 2019, 33, e5013. https://doi.org/10.1002/aoc.5013

    Article  Google Scholar 

  37. Y. Zhang, Y. J. Li, S. Z. Guo, T. Fu, and L. Zhao. Transit. Met. Chem., 2020, 45, 485–492. https://doi.org/10.1007/s11243-020-00400-0

    Article  CAS  Google Scholar 

  38. X. Xu, Y. J. Li, T. Feng, W. K. Dong, and Y. J. Ding. Luminescence, 2021, 36, 169–179. https://doi.org/10.1002/bio.3932

    Article  CAS  PubMed  Google Scholar 

  39. Y. Q. Pan, X. Xu, Y. Zhang, Y. Zhang, and W. K. Dong. Spectrochim. Acta, Part A, 2020, 229, 117927. https://doi.org/10.1016/j.saa.2019.117927

    Article  CAS  Google Scholar 

  40. J. F. Wang, R. N. Bian, T. Feng, K. F. Xie, L. Wang, and Y. J. Ding. Microchem. J., 2021, 160, 105676. https://doi.org/10.1016/j.microc.2020.105676

    Article  CAS  Google Scholar 

  41. R. Y. Li, Z. L. Wei, L. Wang, Y. Zhang, and J. X. Ru. Microchem. J., 2021, 162, 105720. https://doi.org/10.1016/j.microc.2020.105720

    Article  CAS  Google Scholar 

  42. R. N. Bian, X. Xu, T. Feng, and W. K. Dong. Inorg. Chim. Acta, 2021, 516, 120098. https://doi.org/10.1016/j.ica.2020.120098

    Article  CAS  Google Scholar 

  43. J. F. Wang, X. Xu, R. N. Bian, W. K. Dong, and Y. J. Ding. Inorg. Chim. Acta, 2021, 516, 120095. https://doi.org/10.1016/j.ica.2020.120095

    Article  CAS  Google Scholar 

  44. X. Y. Li, Q. P. Kang, C. Liu, Y. Zhang, and W. K. Dong. New J. Chem., 2019, 43, 4605–4619. https://doi.org/10.1039/C9NJ00014C

    Article  CAS  Google Scholar 

  45. J. Chang, S. Z. Zhang, Y. Wu, H. J. Zhang, and Y. X. Sun. Transit. Met. Chem., 2020, 45, 279–293. https://doi.org/10.1007/s11243-020-00379-8

    Article  CAS  Google Scholar 

  46. K. F. Xie, P. Liu, J. F. Zhang, X. J. Li, and L. Fu. Mater. Today Commun., 2020, 24, 101322. https://doi.org/10.1016/j.mtcomm.2020.101322

    Article  CAS  Google Scholar 

  47. K. F. Xie, J. C. Xu, and P. Liu. Appl. Surf. Sci., 2018, 461, 175–181. https://doi.org/10.1016/j.apsusc.2018.04.258

    Article  CAS  Google Scholar 

  48. M. Yu, Y. Zhang, Y. Q. Pan, and L. Wang. Inorg. Chim. Acta, 2020, 509, 119701. https://doi.org/10.1016/j.ica.2020.119701

    Article  CAS  Google Scholar 

  49. Y. X. Sun, Y. Q. Pan, X. Xu, and Y. Zhang. Crystals, 2019, 9, 607. https://doi.org/10.3390/cryst9120607

    Article  CAS  Google Scholar 

  50. Q. Zhao, X. X. An, L. Z. Liu, and W. K. Dong. Inorg. Chim. Acta, 2019, 490, 6–15. https://doi.org/10.1016/j.ica.2019.02.040

    Article  CAS  Google Scholar 

  51. J. F. Wang, R. Y. Li, P. Li, and W. K. Dong. Inorg. Chim. Acta, 2021, 518, 120247. https://doi.org/10.1016/j.ica.2021.120247

    Article  CAS  Google Scholar 

  52. J. F. Wang, T. Feng, Y. J. Li, Y. X. Sun, W. K. Dong, and Y. J. Ding. J. Mol. Struct., 2021, 1231, 129950. https://doi.org/10.1016/j.molstruc.2021.129950

    Article  CAS  Google Scholar 

  53. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  54. G. M. Sheldrick. Acta Crystallogr., Sect. C, 2015, 71, 3–8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  55. L. Yang, R. P. Douglas, and P. H. Robert. Dalton Trans., 2007, 7, 955–964. https://doi.org/10.1039/B617136B

    Article  PubMed  Google Scholar 

  56. K. Ghosh, K. Harms, A. Bauzá, A. Frontera, and S. Chattopadhyay. Dalton Trans., 2018, 47, 331. https://doi.org/10.1039/C7DT03929H

    Article  CAS  PubMed  Google Scholar 

  57. A. Majumder, G. M. Rosair, A. Mallick, N. Chattopadhyay, and S. Mitra. Polyhedron, 2006, 25, 1753–1762. https://doi.org/10.1016/j.poly.2005.11.029

    Article  CAS  Google Scholar 

  58. S. M. Akine, Y. F. Utsuno, and T. Nabeshima. Inorg. Chem., 2009, 48, 10670–10678. https://doi.org/10.1021/ic901372k

    Article  CAS  PubMed  Google Scholar 

  59. X. Xu, J. F. Wang, R. N. Bian, and L. Zhao. J. Coord. Chem., 2020, 73, 2209–2223. https://doi.org/10.1080/00958972.2020.1822524

    Article  CAS  Google Scholar 

  60. S. Zerdane, L. Wilbraham, M. Cammarata, O. Iasco, E. Rivière, M. L. Boillot, I. Ciofini, and E. Colle. Chem. Sci., 2017, 8, 4978–4986. https://doi.org/10.1039/C6SC05624E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. L. A. Rohl, M. Moret, W. Kaminsky, K. Claborn, J. J. McKinnon, and B. Kahr. Cryst. Growth Des., 2008, 8, 4517–4525. https://doi.org/10.1021/cg8005212

    Article  CAS  Google Scholar 

  62. K. S. Saikat. Acta Crystallogr., Sect. E, 2018, 74, 600–606. https://doi.org/10.1107/S2056989018003857

    Article  CAS  Google Scholar 

  63. T. Suparna, H. Anowar, K. S. Saikat, and M. Subrata. J. Mol. Struct., 2020, 1216, 128207. https://doi.org/10.1016/j.molstruc.2020.128207

    Article  CAS  Google Scholar 

  64. X. X. An, Z. Z. Chen, H. R. Mu, and L. Zhao. Inorg. Chim. Acta, 2020, 511, 119823. https://doi.org/10.1016/j.ica.2020.119823

    Article  CAS  Google Scholar 

  65. A. V. Artemev, M. P. Davydova, A. S. Berezin, T. S. Sukhikh, and D. G. Samsonenko. Inorg. Chem. Front., 2021, 8, 1751–1761. https://doi.org/10.1039/D1QI00036E

    Article  CAS  Google Scholar 

  66. M. P. Davydova, I. Y. Bagryanskaya, I. A. Bauer, M. I. Rakhmanova, V. P. Morgalyuk, V. K. Brel, and A. V. Artemev. Polyhedron, 2020 188, 114706. https://doi.org/10.1016/j.poly.2020.114706

    Article  CAS  Google Scholar 

  67. M. P. Davydova, A. S. Berezin, D. G. Samsonenko, and A. V. Artemev. Inorg. Chim. Acta, 2021, 521, 120347. https://doi.org/10.1016/j.ica.2021.120347

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21761018), which is gratefully acknowledged. Computations were made at the National Supercomputing Center in Shenzhen, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. -K. Dong.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 9, pp. 1482-1494.https://doi.org/10.26902/JSC_id79923

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Li, M., Li, S.Z. et al. INVESTIGATION ON THE FLUORESCENT PROPERTY AND THE HIRSHFELD SURFACE ANALYSIS OF A NOVEL HETEROBIMETALLIC Cd(II)—Na(I) PYRIDINE-TERMINAL SALAMO-TYPE COORDINATION POLYMER. J Struct Chem 62, 1385–1397 (2021). https://doi.org/10.1134/S0022476621090079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621090079

Keywords

Navigation