Skip to main content
Log in

DISPERSION-CORRECTED DENSITY FUNCTIONAL THEORY STUDIES ON GLYCOLIC ACID-METAL COMPLEXES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The structure and metal complexation studies using dispersion-corrected density functional theory methods are performed for four stable glycolic acid conformers named SSC, GAC, SAC, and AAT. The condensed Fukui functions are calculated to study the favourable reactive site for metal binding on the glycolic acid conformers. The interaction of alkali metal ions (Na+, K+) with different binding sites (carboxyl, hydroxyl oxygen) of the glycolic acid conformers in the gas phase is investigated at the same level of theory. Our calculations show that the order of stability changes into SSC > AAT > GAC = SAC due to the binding of the metal ion. The relative energy values indicate that the AAT conformer is more stable than the GAC and SAC conformers. This occurs when a metal ion (Na+, K+) is bound with the carboxyl oxygen atom of glycolic acid. The QTAIM, RDG, NCI, ELF, LOL, and NBO analysis are employed in this work to understand the strength of intra- and intermolecular interactions in the glycolic acid metal complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. H. H. Freedman. J. Am. Chem. Soc., 1961, 83, 2900.

    Article  CAS  Google Scholar 

  2. J. Florián and S. Scheiner. J. Comput. Chem., 1994, 15, 553.

    Article  Google Scholar 

  3. M. Troye-Blomberg, E. M. Riley, L. Kabilan, M. Holmberg, H. Perlmann, U. Andersson, C. H. Heusser, and P. Perlmann. Proc. Natl. Acad. Sci. U. S. A., 1990, 87, 5484.

    Article  CAS  Google Scholar 

  4. Molecular Complexes in Earths, Planetary, Cometary, and Interstellar Atmospheres / Eds. A. A. Vigasin and Z. Slanina. World Scientific Publishing: Singapore, 1997.

  5. V. Vaida. J. Chem. Phys., 2011, 135, 020901.

    Article  CAS  PubMed  Google Scholar 

  6. J. Ahokas, I. Kosendiak, J. Krupa, J. Lundell, and M. Wierzejewska. J. Mol. Struct., 2018, 1163, 294.

    Article  CAS  Google Scholar 

  7. C. E. Blom and A. Bauder. J. Am. Chem. Soc., 1982, 104, 2993.

    Article  CAS  Google Scholar 

  8. H. Hasegawa, O. Ohashi, and I. Yamaguchi. J. Mol. Struct., 1982, 82, 205.

    Article  CAS  Google Scholar 

  9. D. K. Havey, K. J. Feierabend, and V. Vaida. J. Phys. Chem. A, 2004, 108, 9069.

    Article  CAS  Google Scholar 

  10. D. K. Havey, K. J. Feierabend, K. Takahashi, R. T. Skodje, and V. Vaida. J. Phys. Chem. A, 2006, 110, 6439.

    Article  CAS  PubMed  Google Scholar 

  11. H. Hollenstein, R. W. Schär, N. Schwizgebel, G. Grassi, and H. H. Günthard. Spectrochim. Acta, Part A, 1983, 39, 193.

    Article  Google Scholar 

  12. H. Hollenstein, T. K. Ha, and H. H. Günthard. J. Mol. Struct., 1986, 146, 289.

    Article  CAS  Google Scholar 

  13. I. D. Reva, S. Jarmelo, L. Lapinski, and R. Fausto. J. Phys. Chem. A, 2004, 108, 6982.

    Article  CAS  Google Scholar 

  14. I. D. Reva, S. Jarmelo, L. Lapinski, and R. Fausto. Chem. Phys. Lett., 2004, 389, 68.

    Article  CAS  Google Scholar 

  15. A. Halasa, L. Lapinski, I. Reva, H. Rostkowska, R. Fausto, and M. J. Nowak. J. Phys. Chem. A, 2014, 118, 5626.

    Article  CAS  PubMed  Google Scholar 

  16. P. D. Godfrey, F. M. Rodgers, and R. D. Brown. J. Am. Chem. Soc., 1997, 119, 2232.

    Article  CAS  Google Scholar 

  17. F. Xiang, Y. Bu, H. Ai, and P. Li. J. Phys. Chem. B, 2004, 108, 17628.

    Article  CAS  Google Scholar 

  18. F. Jensen. J. Am. Chem. Soc., 1992, 114, 9533.

    Article  CAS  Google Scholar 

  19. S. Hoyau and G. Ohanessian. Chem. - Eur. J., 1998, 4, 1561.

    Article  CAS  Google Scholar 

  20. T. Wyttenbach and M. T. Bowers. In: Modern Mass Spectrometry / Ed. C. A. Schalley: Topics in Current Chemistry, Vol. 225. Springer: Berlin, Heidelberg, 2003, 207.

  21. P. Selvarengan and P. Kolandaivel. Int. J. Quantum Chem., 2005, 102, 427.

    Article  CAS  Google Scholar 

  22. S. Pulkkinen, M. Noguera, L. Rodríguez-Santiago, M. Sodupe, and J. Bertran. Chem. - Eur. J., 2000, 6, 4393.

    Article  CAS  PubMed  Google Scholar 

  23. E. F. Strittmatter, A. S. Lemoff, and E. R. Williams. J. Phys. Chem. A, 2000, 104, 9793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. S. Hoyau and G. Ohanessian. J. Am. Chem. Soc., 1997, 119, 2016.

    Article  CAS  Google Scholar 

  25. J. Bertrán, L. Rodríguez-Santiago, and M. Sodupe. J. Phys. Chem. B, 1999, 103, 2310.

    Article  Google Scholar 

  26. L. Boutreau, P. Toulhoat, J. Tortajada, A. Luna, O. Mó, and M. Yáñez. J. Phys. Chem. A, 2002, 106, 9359.

    Article  CAS  Google Scholar 

  27. A. C. Tsipis, C. A. Tsipis, and V. Valla. J. Mol. Struct.: THEOCHEM, 2003, 630, 81.

    Article  CAS  Google Scholar 

  28. B. Modec, D. Dolenc, and M. Kasunič. Inorg. Chem., 2008, 47, 3625.

    Article  CAS  PubMed  Google Scholar 

  29. L. L. G. Justino, M. L. Ramos, M. Kaupp, H. D. Burrows, C. Fiolhais, and V. M. S. Gil. Dalton Trans., 2009, 9735.

    Article  PubMed  Google Scholar 

  30. H. Zhang, O. Kupiainen-Määttä, X. Zhang, V. Molinero, Y. Zhang, and Z. Li. J. Chem. Phys., 2017, 146, 184308.

    Article  CAS  Google Scholar 

  31. D. G. Zhou. Comput. Theor. Chem., 2019, 1169, 112639.

    Article  CAS  Google Scholar 

  32. W. Hujo and S. Grimme. Phys. Chem. Chem. Phys., 2011, 13, 13942.

    Article  CAS  PubMed  Google Scholar 

  33. S. Luo, Y. Zhao, and D. G. Truhlar. Phys. Chem. Chem. Phys., 2011, 13, 13683.

    Article  CAS  PubMed  Google Scholar 

  34. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople. Ab Initio Molecular Orbital Theory. Wiley, 1986.

  35. M. Rezaeian and M. Izadyar. Int. J. Quantum Chem., 2019, 119, e25966.

    Article  Google Scholar 

  36. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. J. Chem. Phys., 2010, 132, 154104.

    Article  CAS  PubMed  Google Scholar 

  37. F. Ahmad, M. J. Alam, M. Alam, S. Azaz, M. Parveen, S. Park, and S. Ahmad. J. Mol. Struct., 2018, 1151, 327.

    Article  CAS  Google Scholar 

  38. M. P. Andersson. Phys. Chem. Chem. Phys., 2016, 18, 19118.

    Article  CAS  PubMed  Google Scholar 

  39. J. Mähler and I. Persson. Inorg. Chem., 2012, 51, 425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. A. Becke. Phys. Rev. A, 1988, 38, 3098.

    Article  CAS  Google Scholar 

  41. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 785.

    Article  CAS  Google Scholar 

  42. M. Ganesan, N. Vedamanickam, and S. Paranthaman. J. Theor. Comput. Chem., 2018, 17, 1850009.

    Article  Google Scholar 

  43. Y. Zhao, and D. G. Truhlar. J. Chem. Phys., 2006, 125, 194101.

    Article  CAS  PubMed  Google Scholar 

  44. W. Yang and W. J. Mortier. J. Am. Chem. Soc., 1986, 108, 5708.

    Article  CAS  PubMed  Google Scholar 

  45. T. Koopmans. Physica, 1934, 1, 104.

    Article  Google Scholar 

  46. T. Lu and F. Chen. J. Comput. Chem., 2012, 33, 580.

    Article  CAS  PubMed  Google Scholar 

  47. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision D.01. Gaussian: Wallingford, CT, 2009.

  48. S. Paranthaman, S. Sampathkumar, and N. K. Murugasenapathi. J. Chem. Sci., 2018, 130, 164.

    Article  CAS  Google Scholar 

  49. M. Szafran, A. Komasa, K. Ostrowska, A. Katrusiak, and Z. Dega-Szafran. Spectrochim. Acta, Part A, 2015, 136, 1216.

    Article  CAS  Google Scholar 

  50. R. G. Parr, W. Yang. J. Am. Chem. Soc., 1984, 106, 4049.

    Article  CAS  Google Scholar 

  51. M. E. Elshakre, M. A. Noamaan, H. Moustafa, and H. Butt. Int. J. Mol. Sci., 2020, 21, 1253.

    Article  CAS  PubMed Central  Google Scholar 

  52. C. Morell, A. Grand, and A. Toro-Labbe. J. Phys. Chem. A., 2005, 109, 205.

    Article  CAS  Google Scholar 

  53. I. Rozas, I. Alkorta, and J. Elguero. J. Am. Chem. Soc., 2000, 122, 11154.

    Article  CAS  Google Scholar 

  54. E. Espinosa, E. Molins, and C. Lecomte. Chem. Phys. Lett., 1998, 285, 170.

    Article  CAS  Google Scholar 

  55. A. Otero-De-La-Roza, E. R. Johnson, and J. Contreras-García. Phys. Chem. Chem. Phys., 2012, 14, 12165.

    Article  CAS  PubMed  Google Scholar 

  56. J. Contreras-García, R. A. Boto, F. Izquierdo-Ruiz, I. Reva, T. Woller, and M. Alonso. Theor. Chem. Acc., 2016, 135, 242.

    Article  CAS  Google Scholar 

  57. P. Wu, R. Chaudret, X. Hu, and W. Yang. J. Chem. Theory Comput., 2013, 9, 2226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. J. Contreras-garcía, E. R. Johnson, S. Keinan, R. Chaudret, J. Piquemal, D. N. Beratan, and W. Yang. J. Chem. Theory Comput., 2011, 7, 625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. N. K. Nkungli and J. N. Ghogomu. J. Mol. Model., 2017, 23, 200.

    Article  CAS  PubMed  Google Scholar 

  60. B. F. Rizwana, J. C. Prasana, S. Muthu, and C. S. Abraham. Comput. Biol. Chem., 2019, 78, 9.

  61. S. S. Khemalapure, V. S. Katti, C. S. Hiremath, S. M. Hiremath, M. Basanagouda, and S. B. Radder. J. Mol. Struct., 2019, 1196, 280.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ganesan.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 8, pp. 1251-1269.https://doi.org/10.26902/JSC_id78515

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, M., Paranthaman, S. DISPERSION-CORRECTED DENSITY FUNCTIONAL THEORY STUDIES ON GLYCOLIC ACID-METAL COMPLEXES. J Struct Chem 62, 1167–1183 (2021). https://doi.org/10.1134/S0022476621080023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621080023

Keywords

Navigation